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Abstract

This paper addresses the problem of localization and map construction by a mobile robot in an
indoor environment. Instead of trying to build high-fidelity geometric maps, we focus on constructing
topological maps as they are less sensitive to poor odometry estimates and position errors. We propose a
modification to the standard SLAM algorithm in which the assumption that the robots can obtain metric
distance/bearing information to landmarks is relaxed. Instead, the robot registers a distinctive sensor
“signature”, based on its current location, which is used to match robot positions. In our formulation of
this non-linear estimation problem, we infer implicit position measurements from an image recognition
algorithm. We propose a method for incrementally building topological maps for a robot which uses a
panoramic camera to obtain images at various locations along its path and uses the features it tracks
in the images to update the topological map. The method is very general and does not require the
environment to have uniquely distinctive features. Two algorithms are implemented to address this
problem. The Iterated form of the Extended Kalman Filter (IEKF) and a batch-processed linearized ML
estimator are compared under various odometric noise models.

1 Introduction

Solving the Simultaneous Localization and Mapping (SLAM) problem for small, resource-limited robots
means doing so without the aid of good odometric estimates and accurate metric range sensors. This causes
a problem for traditional solutions to the SLAM problem which typically require one or both of the above.
The motivating factor for this research is the necessity of doing SLAM on custom miniature robots, called
Scouts [31] (Fig. 1), that our research group has developed.

We propose a modification to the standard SLAM algorithm in which we relax the assumption that the
robots can obtain metric distance and/or bearing information to landmarks. In this approach, we obtain
purely qualitative measurements of landmarks where a location “signature” is used to match robot pose
locations. Landmarks correspond to sensor readings taken at various (z,y) positions along the path of the
robot. This is a divergence from most SLAM approaches where landmarks represent specific objects of a
known type in the environment such as edges, corners, and doors.

In this paper, we describe two methods to solve this particular variation of the SLAM problem. The
first is an on-line method by which the Iterated form of the Extended Kalman Filter (IEKF) processes
all measurements, including both actual odometric and inferred relative positions (cf. section 3.2), and
estimates the coordinates of the locations where images were recorded along the trajectory of the robot. In
this method, landmarks correspond to images taken at various (x,y) positions of the robot. The second
method is a batch-processed linearized ML algorithm which addresses some of the shortcomings of the IEKF
method. The IEKF method has the advantage of being able to run in real-time and produce an estimate as
the robot navigates around the environment. The ML algorithm has the advantage of having all of the data
to process at once. This tends to produce robust estimates as it is capable of handling the nonlinearities in
the system in an iterative and more robust fashion (i.e. all Jacobians are computed at each iteration using
the new improved state estimate).



Figure 1: Scouts, due to their small size (11cm long and 4cm diameter), are limited to a monocular camera
as their only exteroceptive sensor. Their limited on-board computing capabilities also make them totally
dependent on a wireless proxy-processing scheme in which off-board run the software necessary to handle
behavior control as well as the processing of the robot’s video data. The Scout used in this work is fitted
with an upward-facing Omnitech 190° fisheye lens. The lens provides 360° horizontal field of view around
the robot, effectively functioning as an omnicamera. The robot is 11 cm long and 4 cm in diameter.

This remainder of this paper is organized as follows: Related work is described next in Section 2. Sec-
tions 3 and 4 describes the Extended Kalman Filter estimator and Batch Maximum Likelihood estimators,
respectively. Experimental results are shown in Section 5 and the paper is summarized in Section 6.

2 Related Work

The Extended Kalman Filter has been used for localizing [15] and performing SLAM [35] on mobile robots
for at least a decade. Our approach differs from traditional EKF estimators in that we do not have the ability
of resolving specific geometric information about the landmarks we observe in our environment. Instead, the
landmark positions are explicitly coupled to the position of the robot.

In previous implementations of SLAM algorithms, it is frequently assumed that the robot is able to
measure its relative position with respect to features/landmarks [4] [22] or obstacles [38] in the area that it
navigates. This implies that the robot carries a distance measuring sensor such as a sonar or a laser scanner.
The algorithms described in this work are designed for robots that have no such sensor modality.

Bayesian methods have also been used for mobile robot localization (such as Markov Localization) and
mapping [38] where the modes of arbitrary robot pose distributions are represented in a discretized grid.
Statistical methods such as Monte Carlo localization [39] use sampling techniques to more quickly estimate
the distribution of possible robot poses. Most recently, a method of factoring complex joint probability
distributions, known as Rao-Blackwellization [21], has been employed for stochastic robot mapping and
localization in an algorithm called FastSLAM [19]. Distributed and hierarchical factorizations for the particles
in a map have also been proposed [6]. In general, all of these methods typically use very accurate sensors
and/or robots with very accurate odometry that allow them to resolve accurate maps over large distances.

In contrast to explicit metric-based methods, more qualitative methods such as topological maps of nodes
have been used as well [33] [2]. Of special note is the research into cognitive spatial representations suggested
by Ben Kuipers [14] in the Semantic Spatial Hierarchy (SSH) [13] [29]. Locations are explicitly designated by
distinctive (but not necessarily unique) sensor signatures. Our work is inspired by the SSH philosophy and
attempts to wrap it into a more formal and robust representation using the maximum likelihood techniques.
Another closely related area of research is the use of sensor “fingerprints” of places for robot navigation [36].
This approach illustrates an ellegant technique by which a robot can build a map and disambiguate similar



locations through the use of a POMDP. In contrast, the approach described in this paper uses a maximum
likelihood algorithm and a very rich location sensor signature represenation to help disambiguate similar
locations.

Stochastic sampling techniques for searching through the space of stochastic maps have recently been
proposed using MCMC [27] as well as a Rao-Blackwellized (factored) Particle Filter (RBPF) [28] techniques.
The SSH and other approaches, such as reported in [10], merge metric with topological approaches in order
to take the best aspects of both worlds.

Physics-based models that involve spring dynamics have been used quite effectively to find minimum
energy states in topological map structures [5] [9]. In previous work [30], we describe an ad-hoc physics-
based method that uses spring and mass dynamics to minimize the energy of the topological map. We have
had some success with these methods but have found that the parameter choices for the models tend to be
very important and that numerically solving for the set of non-linear equations can be unstable. Recently,
a method using stochastic gradient descent has been proposed for loop closure in very high-dimensional
datasets that appears very promising in both numerical accuracy as well as computational speed [24].

Spatial reasoning algorithms that make use of visual information for landmarks typically fall into two
major categories in terms of the features that are extracted. In the first of these two categories, specific
features are extracted from each image and are used as a “signature” of the location where that image was
taken. In the second category, the entire image is treated as a single high-dimensional feature.

Examples of the first category include [34] [12] [1] where the SIFT [16] feature detector is used to identify
“landmarks” in the images that are used as the input to a probabilistic representation of the robot’s position.
In [41], image signatures captured from an omnidirectional camera are used to construct a topological map of
an environment by generating histograms of the RGB and HSV (Hue, Saturation, and Value) components.
In [37], visual landmark information is extracted and used as a signature in a formalism called Bayesian
Programming (a generalization of Bayesian Networks [20]) for localization of the robot. In [23], visual recog-
nition of landmarks that are used for the identification of loop closure is used to augment a laser-based SLAM
approach. Structure From Motion (SFM) algorithms, such as described in [3], compute the correspondences
between features extracted from multiple images to estimate the geometric shape of landmarks as well as to
estimate the robot’s pose. However the applicability of this algorithm is conditioned on the existence of a
sufficient number of uniquely identifiable individual features along the trajectory of the robot.

Examples of the second category include [26] where subspace methods are used to map the images to a
much lower-dimensional manifold. In [8], a spectral-clustering-like algorithm is proposed which clusters the
images to appropriately describe the topology of the map. In practice, our vision system could be replaced
by any other kind of sensor modality. The sensor models that we use abstract the specifics of the sensor
and create instead a boolean sensor abstraction layer which can report whether the robot has re-visited a
location.

In contrast to these previous approaches, our approach is especially suited for use on small mobile robots
where the computational power and/or the communications bandwidth between sensor and processors is
very low. In our particular implementation, we make use of a feature detection and tracking algorithm
(KLT [17] [40]) to visually identify a set of sparse distinguishing features in an omnidirectional image captured
from the robot’s camera. This feature set becomes a “signature” that is used to determine whether the robot
has completed a cycle in its path. These intersections become “landmarks” in the robot’s map and serve as
constraints that help to correct for accumulated odometric error in the robot’s estimated trajectory.

3 Extended Kalman Filter Estimator

This section describes how an Extended Kalman filter (EKF) estimator for an appearance-based mapping
system can be derived. As described previously, such a system uses an environmental sensor that neither relies
on any specific type of features, nor takes distance measurements to landmarks. Such a sensor determines
a signature for distinct locations along the robot’s path, stores the signature and the estimated pose of
the robot at that time instant, and finally retrieves that information once the robot revisits the same area.
Determining whether the robot is at a certain location for a second time is the key element for providing



positioning updates. By correlating two scenes, a relative position measurement can be inferred and be used
to update both the current and previous (at locations visited in the past) pose estimates for the robot.

3.1 Propagation Equations

The Extended Kalman filter uses a model of the robot kinematics to compute an estimate of the robot’s
position at discrete timesteps. Associated with this state estimate is a covariance matrix which represents
the uncertainty in the robot’s position estimates over time. Our model of robot motion consists of a 3D pose
vector (x,y,¢) (2D pose and orientation). Our derivation of the EKF is based on an indirect model where
which uses error-state propagation [18]. The relevant details of the propgation equations are provided here
for completeness. For further details of the derivation, please refer to [32].

The measured linear (V;,,) and angular velocity (w,,) are used to recursively update the robot’s pose at
discrete time steps as shown in the following equation:

ir(k+1) = 2.(k) 4 Vy(k)dt cos o (k) (1)
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The linearized discrete-time error-state propagation equation in global coordinates is the difference be-
tween the estimated state and the (unknown) true state:
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With each motion, the state vector is propagated according to these equations. Odometric errors will
continuously decrease the quality of the robot’s estimate which will increase the robot’s position uncertainty.
The covariance propagation takes place at time k + 1 but at this point, the robot has not made a new
observation with its sensors since time k. This dual time index is represented by the notation & + 1|k. The
equation for the propagation of the robot’s position error covariance matrix at time k + 1|k is:

EX(k+1D)XT(k+1)]
= Pr(k)Pr(klk)®% (k) + Gr(k)QrGE (k) (7)

Pr(k + 1]k)

The @ r matrix from the state error covariance propagation in Equation (7) represents the noise covariance
of the robot’s translational and rotational velocity. For a differentially-driven robotic platform such as the
Scout, where linear and rotational velocities are a function of the left v; and right v, wheel speeds, i.e.
Vi = (1)"57”"), Wy = (1}1;71»)7 this matrix is defined as:
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where o,, and o,, are the standard deviations of the wheel speed noises and « is the length of the
wheelbase. As can be seen, the linear and rotational velocities are correlated as long as the standard
deviations of the linear and rotational velocity are non-zero and not equal.

The 2D pose (z,y) of the landmarks must also be estimated when mapping and so these quantities must
also be integrated into the state vector. Unlike the robot, the coordinates of the landmark locations X, do
not change over time. Thus the full state vector X contains all of the poses to be estimated of the robot Xg
along with all the landmarks Xp,. The error-state propagation and covariance equations are the same form
as equations 5 and 7, respectively, but where the state vector and covariance matrix are of dimension N + 1
where N is the number of landmarks.

3.2 Update Equations

If the robot were to only propagate its state estimates and corresponding covariance using the above equa-
tions, the covariance would increase without bounds. To correct for odometric errors and to reduce the
uncertainty, the robot must take sensor readings and compare those with the expected ones given the cur-
rent state estimates.

For appearance-based mapping, a sensor modality is preferred that neither relies on any specific type of
features, nor requires distance measurements. Using the robot’s sensor, a unique visual signature for distinct
locations along the robot’s path can be obtained. These signatures are associated with the estimated pose
of the robot at that time instant, and can be retrieved once the robot revisits the same area. Determining
whether the robot is at a certain location for a second time is the key element for providing positioning
updates. By correlating any two scenes, we can infer a relative position measurement and use it to update
both the current and previous pose estimates (at locations visited in the past) for the robot. This in effect
will produce an accurate map of distinct locations within the area that the robot has explored. In effect, the
landmarks that the robot detects explicitly represent the specific locations that the robot has visited.

Every time the robot takes an image of its surroundings, it employs an algorithm to determine whether
the sensor reading corresponds to a previously seen locations Xy, or to a novel location X, ,. We use the
above notion of an appearance-based sensor model (more thoroughly described in [30]) and define the sensor
reading to be:

Zi(k+1) O2x1 + N, (k+1)

RXLi + Nzi (9)

where ® X, is the landmark’s state vector in the robot’s coordinate system R, and N, (k+1) is Gaussian
measurement noise. The 02x1 value is an inferred sensor reading which reflects the robot’s assertion that its
physical location directly corresponds to the sensor reading. That is, the only way the robot could receive
this sensor reading is if ® Xp is the same location as ®X .- The robot is assumed not to have any other
way to measure distances to landmarks and so any erroneous displacement in this reading is captured by
the noise term N, (k + 1).

The inferred and estimated sensor readings are:

Zi = §CT(é) (Xp, —pr)+ N, (10)

Zi = 4076, (Xu. —pn) (1)
where pp = [mr yT]T7 PR = [j’:r QT}T and

G0t = | ] (12



is the rotation matrix that relates the orientation of the frame of reference R on the robot with the global
coordinate frame G. By subtracting the true sensor reading from the estimated sensor reading, the linearized
measurement error is computed as:
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Adding entries for all of the variables, the full equation is expressed as :
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The H; matrix is used to update the state estimate for the pose of the robot X and the positions of the
landmarks Xy, every time an image is recorded. The remaining update equations are:

r(k+1)= Z(k+1) = Z(k+1) (15)
Sk+1)= Hk+1)Pk+1k)HT(k+1)+ R(k+1) (16)
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The difference between the measured and estimated sensor reading in Equation (15) is called the residual.
The covariance matrix of the residual is shown in Equation (16). These two values are used to compute
the Kalman gain (which affects how much to change the state vector based on the correction required) in
Equation (17) which is used to update the state vector and state covariance in Equations (18) and (19),
respectively.

3.2.1 Iterative Extended Kalman Filter

Since the accuracy of this update depends on the accuracy of the linearization, we employ the Iterated
form of the Extended Kalman Filter (IEKF) [7], [18]. First, the IEKF linearizes the measurement equation
Equation (13) around the current estimate X (k + 1|k) of the state and calculates the updated state estimate
X (k+1|k+1) using Equations (15), (16), (17), (18). Then, the filter resets X (k+1|k) to this updated value
and the same process is repeated until it converges (the rate of change in the state estimate drops below a
preset threshold). The state covariance P(k + 1|k) is not updated with Equation (19) until after the state
estimate has converged.



3.3 Simulation Experiment

This method was tested on a simulated Scout robot. The standard deviation of the estimated wheel encoder
error was 1.4 cm/s. The true path of the simulated robot is shown in Figure 2(a) as a square that is traversed
twice. Sensor snapshots are taken roughly every 0.5 m as the robot traverses the path. The first time around
the loop, the robot is essentially in an exploration mode. Each landmark that it observes is unique and thus,
it adds the estimated positions of those landmarks (i.e. robot positions where the images were taken) directly
to the state vector. Since the robot has no other information on those landmarks, the first sighting is the
best information available. The second time around the loop, the robot re-discovers the landmarks that it
saw on its first pass. If the Kalman update procedure is used, the odometric error in the robot’s position will
be reduced. In addition to correcting the current position estimate, each of the previous landmark positions
will also be corrected. If no update step is done, as shown in Figure 2(b), the robot’s path estimate will be
very poor and multiple positions will exist for the same landmark.
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Figure 2: True and estimated (corrupted by odometric error) paths for the simulation experiments. The
path starts from the lower left, moves counter-clockwise, and is traversed twice. Sensor readings are taken
at the corners of the square and at the midpoints of each path leg. The scale is in meters.

As the robot moves through the environment without any sensor updates, the certainty in its odometric
estimate becomes increasingly worse. The covariance of the robot’s position with no landmark corrections
is shown in Figure 3.

In contrast, Figure 4 shows the landmark positions and position uncertainty of each location after correc-
tion by correlating the robot’s position with the sensor readings. After the initial path around the cycle, the
first subfigure (timestep 71) shows the large uncertainty accumulated in the robot’s position. At timestep
72, the first update step is done and the uncertainty is greatly diminished. This is mostly due to the
small covariance of the sensor reading vs. the large covariance of the robot’s odometric propagation. After
propagating to timestep 86, the error covariance of the robot’s path estimate (shown as a dashed line) has
generated a somewhat substantial error. This error is once again diminished in timestep 87 when another
previously-seen landmark is observed.

Figure 5 illustrates how the estimated landmark positions are improved by using the IEKF and how the
sensor residual (the error between estimated and true sensor reading) improves with respect to the 3o upper
and lower bounds of the residual covariance estimates.

4 Batch Maximum Likelihood Estimator

The EKF is a recursive “real-time” estimator which processes each sensor reading as it arrives. An alternative
approach is to wait until all of the sensor readings have arrived and then process all of the data at once.
This section describes how to formulate such a batch maximum likelihood (ML) estimator as a summation
of cost functions that must be minimized.

Two separate cost functions must be defined. The first cost function represents the odometric estimate
of the robot’s pose and is described as:
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Figure 3: Propagation of uncertainty as the robot traverses its environment. No Kalman update step is
done and so multiple positions exist for each landmark measurement and the position estimate becomes
progressively worse with each step. Each subfigure represents the location where the robot has taken a
sensor reading. The 30 region of uncertainty is shown surrounding the robot’s estimated position.

(Yi = hy (X)) TP (g3 — hy, (X)) (20)

where y; is a vector that describes the measured displacement between the previous position measured
at time ¢ — 1 and the current position measured at time ¢. The function h,, (X) computes the predicted
displacement of the robot given the current state vector from time ¢ — 1 to time . The covariance of this
measurement is P;.

As described in the previous section, the state vector of a maximum likelihood estimator consists of
all of the necessary parameters to solve for. For the case of a mobile robot moving on a 2D surface, the
variables represent individual locations to which the robot has traveled. In the previous section, this was
the set of sensor readings S. It was also assumed that the robot only traveled to D distinct locations and
that |D| < |S]. This assumption is not quite true since while the robot may have traveled near the same
location several times, those exact positions of the robot were not completely identical. That means that
simply merging the nodes as was done previously will not provide the most accurate estimate. Thus, S and
D will have the same number of elements and the cost function associated with the sensor readings is:

(Zi - th (X))TRZI(ZZ - hzi (X)) (21)
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Figure 4: Propagation of uncertainty as the robot traverses its environment with Kalman update correction.
Each pair of images shows the estimated position of the robot with uncertainty the timestep before and after
the sensor reading was taken and the landmark positions were correlated. The estimated path of the robot
just before the update is drawn with a dashed ellipse. The 30 region of uncertainty is shown surrounding
the robot’s estimated position as a solid ellipse.

In the sensor cost function, z; is a vector that describes the measured displacement between a position
measured previously at time j (not limited to time 7 — 1) and the current position at time 4. Using the notion
of the appearance-based sensor, the value of z; will always be 0 since the landmarks correspond directly to
the positions of the robot. The function h., (X ) computes the predicted displacement of the robot given the
current state vector from the previously-seen location at time j to the current time . The covariance of this
measurement is R;.

As the robot discovers new landmarks, it adds their positions to the state vector and marks those variables
as the locations of the original sightings. When the robot re-discovers a landmark, it also adds this position
to its state vector, but flags it as previously-seen. The sensor cost function in Equation (21) always compares
the current measured position of a landmark against the first discovered position of that landmark.

Combining the motion and sensor cost functions (Equations (20) and (21)), the complete cost function
is:

S0 = o OV P (0 = by (X0) + 3025 = ey (XD TR (35 = B (X))
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Figure 5: The effect of different numbers of iterations in the update step of the IEKF. The plots show the
sensor residual r = z — 2 and the 30 upper and lower bounds of the residual covariance S. The plots are of
the x position of the robot. The y position (not shown) has similar characteristics. These residuals are all
for landmark positions that have been visited a second time.

The number of motion cost function terms is the number of sensor readings minus one, |S| — 1. The
number of sensor cost function terms corresponds to the number of non-unique landmarks the robot has
identified.

4.1 Linearized Estimator

The non-linear nature of this problem, introduced by the need to handle the rotational component of the
robot, means that finding the best solution can be analytically and computationally challenging. The method
that we use for finding the minimum solution is to linearize the system with a first-order linear approximation
such as a Taylor series expansion. Thus, the sensor and motion measurement functions take the form:

1

h(X) h(X)+ Vxh(X)| (X -X)

X=X
X))+ H(X - X) (22)

R

where X is the true (unknown) state vector, X is the robot’s estimate of the state vector, and H is the
Jacobian of the cost function h. Expanding this equation for each of the cost functions and taking the first
derivative to solve for its minimum, a recursive formulation of the estimator can be found which is quadratic
in X. To minimize the function with respect to X, the first derivative is taken and the equations are set to
0. This results in the following equation:

n—1 n -1 n—1 n
X=X+ <Z Hy P7Hy, + ZH;RilHZi> (Z H,,P (y — hy, (X)) + H. R (z — he, (X))) (23)
1=1 =1 =1 =1

where the X on the right-hand side of the equation is the initial estimate of the system (see [32] for more
details about the derivation).

The first value of this estimate can be obtained from the robot’s raw odometry, if no other estimate is
available. This is a recursive form where the result from the left-hand side of the equation is plugged back
into the equation on the right-hand side. This first-order linear approximation of the measurement function
is only valid for small errors in the estimate of X. As the equations are iterated, the state estimate will
continue updating until it converges to a stable solution.

The derivations of the cost functions for the odometry propagation and place sensor measurements are
described below:
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4.1.1 Odometry Propagation Measurement

The measurement function for the displacement estimates between subsequent nodes based on their odometry
is defined as:

) = [RG 0 0 (- en

where Xy, = [x; y; (MT and Xr, |, = [xi—1 Yi-1 ¢i,1]T are the positions of the robot at time 7 and 7 — 1,
respectively, and % C(¢,) is the same as equation 12.
The first-order Taylor approximations of the odometry measurement function is defined as:

Yvi = {_CT(¢Li71) _CT(¢Li—1)J (XLi _XLi—1> : CT(¢L1'71) 021'1} [}?;7 ]

_ . XLi—l
o HLi—l : HLi XLi

i, [Yp] (25)

X is the error in the state estimate X ). These expressions for the error terms are only important for
calculating the Jacobian and are not used for any other part of the estimator.
4.1.2 Place Sensor Measurement

The measurement function for the estimated distance between two nodes based on the virtual place sensor’s
reading that are on the same location is defined as:

hzi (X) = (sz' - ij) (26)

where X, = [z; y;]" and Xp, = [z yj]T are the global 2D poses of the robot’s position (orientation is
not considered). Orientations of these landmarks are not tracked as some sensor modalities may not have
an orientation associated with their readings.

Likewise, the first-order Taylor approximations of the place sensor is defined as:

5 = -1 0 : 1 0 [)gpj}
: sz'

= |m, ¢ m] [f(] (27)
- [ e

4.2 Simulation Results

This estimator was run on the simulated data shown in Figure 6(b). Figure 7 shows plots of the covariance
matrices associated with each of the individual odometry readings at each of the locations where sensor
readings were taken. Each odometric reading is considered to be independent of each other and thus, the
covariance matrices are only defined between a single pair of sensor readings. Because of the nonlinearities
in the system, this ML algorithm must be iterated several times until convergence. The convergence of this
algorithm also depends greatly upon the initial positions of the nodes.

11
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Figure 6: True and estimated (corrupted by odometric error) paths for the simulation experiments. The
path starts from the lower left, moves counter-clockwise, and is traversed twice. Sensor readings are taken
at the corners of the square and at the midpoints of each path leg. The scale is in meters.

Figure 8 illustrates the multi-step process of how the linearized ML estimator converges to a solution.
The uncorrected odometric readings are used as the initial estimate for the state vector. The iterative process
was stopped when the average landmark update per iteration dropped below 0.001 m. In this experiment,
only four iterations of the algorithm were necessary before the stopping condition was reached. Because the
algorithm is a closed-form solution, the computational complexity is based on the time required to invert
the covariance matrix. This is order O(n?) where n is the number of landmarks.

5 Experimental Results

The miniature Scout robots were used as the experimental platform for this work. Scouts, such as the one
shown in Figure 1, are differentially-driven robots 1lcm long and 4cm in diameter. Because of the small
size of the Scout, a camera is the only extereoceptive sensor that is used. Video data is transmitted from
the robot to an off-board workstation for processing as the robot’s on-board computers are insufficient to
process its own video stream. All of the algorithms described in this paper are executed on the off-board
computers and operate on the video data stream transmitted from the robot.

For these experiments, a Scout robot was teleoperated around an environment (in order to collect ground
truth) and image data was captured from its camera. In their original design, the Scouts were equipped
with forward-facing cameras with a 65° field of view. For this work the Scout has been equipped with an
upward-facing 190° vertical/360° horizontal field of view lens from Omnitech Robotics [25]. An example
image taken from this camera and the corresponding de-warped image is shown in Figure 9.

In order to compute a signature for each location visited, a set of features must be identified and extracted
from the image. However, in the most general case, the robot will be required to explore a completely
unknown environment and as such, a specific feature detection algorithm chosen ahead of time could fail to
find a distinctive set of features.

For this work, the Lucas-Kanade-Tomasi (KLT) feature tracking algorithm is used to compare images
to determine the degree of match. The KLT algorithm consists of a registration algorithm that makes it
possible to find the best match between two images [17] as well as a feature selection rule which is optimal
for the associated tracker under pure translation between subsequent images [40]. An implementation of the
KLT algorithm' is used to identify and track features between successive images as a method for determining
the match between two images. KLT features are selected from each of the images and are tracked from one
image to the next taking into account a small amount of translation for each of the features. The degree of
match is the number of features successfully tracked from one image to the next. A total of 100 features are
selected from each image and used for comparison. To take into account the possibility that two panoramic
images might correspond to the same location but differ only in the orientation of the robot, the test image is

LOriginally developed by Stan Birchfield at Stanford University [11].
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Figure 7: Uncertainty ellipses for each of the independent odometric readings used by the linearized maximum
likelihood estimator.

rotated through discrete angles (typically 16) the best match is found. The 16 rotated images are generated
and cached when each new image is found. This operation only takes a few seconds per image on a 2.3GHz
Intel Pentium-M processor. Figure 10 shows the 100 best features identified in an image and shows how
many of those features are successfully tracked to the lower image.

This approach is similar in flavor to [16] in that the image is reduced in resolution for the sake of rapid
matching. In that work, a pyramid structure involving several levels of dimensionality reduction is created
from each image and different images are matched from the lowest resolution to the highest. In our case,
the KLT features serve as a single level of “dimensionality reduction” that is used for matching one image
with the next.

It is important to note that no attempt is made to track the features over multiple frames of video. This
technique does not attempt to compute structure from motion on this data primarily because the algorithms
described in this research will ultimately be run on robots that do not have real-time video processing
capability.

While mapping, the mobile robot travels around an unknown area and stores images from its camera.
KLT is used to compare images recorded at different locations along the trajectory of the robot. When the
received image does not match a previously recorded one, it is assumed that this location is novel and is
added to the state vector of landmarks. This constitutes an exploration phase where the robot creates its
world model. The rate at which images are collected can either be uniform based on the robot’s odometry,
or it can be data-driven. In general, sensor readings are only necessary at points where a noticeable change
in the number of matched features is detected. When the robot encounters an image which matches one
that was previously seen, it considers these features to be the same and corrects its estimate of the landmark
position.

The KLT algorithm and omnicamera setup are treated as a “virtual sensor” that returns true or false as
to whether the robot has returned to a location that it has visited before. This information is given to the
estimators and a relative position measurement Z = 0sy1 + IV, between the current position of the robot
and that of the same location visited in the past is inferred. The accuracy of this measurement is inferred by
the locus of points (forming an ellipsoid) around a location, with the characteristic that the images recorded
at each of them are considered identical by the KLT. The parameters of the ellipse are computed empirically

13
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Figure 8: Four steps in the convergence of the linearized maximum likelihood estimator. By the fourth step,
the estimate has almost converged.

by how far the robot has to move from a particular location before the signature match fails.

Once a set of sensor readings are found to match, the physical (z,y) location of the robot is stored as
a landmark in the state vector. This is different from other mapping approaches whereby specific objects
in the environment are stored as landmarks. In our approach, the features identified in the image are only
used for finding the correlation between images rather than being used to identify the positions of structure
in the environment. The visual information is abstracted away to a boolean function which returns whether
the robot has returned to the same location. Thus, only the robot’s position where those sensor signatures
line up is used as a landmark in the state vector.

The image matching algorithm is the most computationally expensive part of the mapping process.
Finding the 100 best KLT features in an 1507x240 pixel image on a 2.3GHz Intel Pentium-M processor takes
approximately 0.7 seconds. Tracking these features between one image and the next takes approximately
0.8 seconds. Because this process is repeated for each of the 16 different rotated images for a given location
each new image must be compared against the history. As such, this algorithm will not run in real time for
large numbers of stored images. However, due to the proxy-processing nature of the Scout robot, the image
processing algorithm can be offloaded to any number of available off-board computers to help speed up the
process through parallel processing of the image data.

5.1 Office Environment Experiment

The robot was moved around an environment in a path that intersected itself five times and an image was
taken from the camera roughly every 0.3 m. The robot’s path is shown in Figure 11.

The KLT algorithm was used to track features between each pair of images in order to find locations
where the robot’s path crossed itself. Figure 12(a) shows the true path of the robot and the locations where
the path crossed itself and landmarks were thus observed. Figure 12(b) shows the estimated path of the
robot as computed by the robot’s noisy odometry readings. The estimated landmark positions observed
during the run are shown as well. This figure does not assume that any sensor updates were made.
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Figure 9: A raw and de-warped image taken from the Omnitech 190° lens.

The different estimators were run on this dataset in order to compare their relative performances. The
average Euclidean error between the estimated positions and ground truth is shown in Table 5.1.

Estimator Algorithm IEKF | Batch ML
Average Euclidean Error | 0.171 m | 0.092 m

Table 1: Average Euclidean error for the five landmarks generated in for the experiments using images and
odometry captured from a real robot.

5.2 Comparison of Estimators with Varying Noise Models

A series of synthetic paths were generated from the above data set and used to test the performance of
each of the estimators using different odometric noise models. The simulated odometric noise ranged from
a standard deviation of 10 deg /sec to 120 deg /sec in encoder error (in 10 deg increments). A set of 100
robot paths were created for each noise variance setting. For each path, both of the robot’s wheel encoders
was corrupted by noise drawn from a distribution with the same variance.

Figure 13 shows the results of the different estimators on paths affected by increasing levels of odometric
error. The linearized ML estimator had the least amount of error in the placement of the landmarks. The
performance of IEKF estimator was equivalent to linearized ML up to an error of around 50 deg /sec but
rapidly diminished in accuracy as the odometric errors increased.
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Figure 10: The 100 best features selected by the KLT algorithm in the top image are shown as black
squares. The bottom image shows how many features were tracked from the top image to the bottom image
(corresponding to a robot translation of approximately 0.6 m.)

5.3 Data Association

In the previous experiments, the office was cluttered enough such that 100 KLT features were sufficient to
disambiguate all of the locations where the robot visited. A set of 320 images was taken at 0.3 m intervals in
the office environment used for these experiments. Figure 14 shows a plot of the Euclidean distance estimate
between each pair of locations as a function of the number of features that the KLT algorithm can track
between the respective images. As can be seen, until the number of features tracked drops between 40-50,
the likelihood that the two images are within 0.5 m of each other is extremely high. With fewer features, it
becomes extremely hard to tell whether a location is the same or not. In this graph, there were no values of
matched features of 60 and higher. A match of 100 features would indicate that the the robot was in exactly
the same location.

In a feature and texture-rich environment such as an office or a home, we have found that perceptual
aliasing is not that much of a problem. Finding and tracking such a large collections of KLT features ensures
that each location is unique. However, in environments that do not have unique sets of features, such as in
sparse corridors, locations will become more ambiguous and a mechanism for handling improperly matched
images will be needed.

6 Summary

Localization and mapping is a challenge for all mobile robots. Existing methods which work well on large
robots do not necessarily scale well as the size of the robot decreases. Sensors typically used in mapping
algorithms, such as sonars, laser, and stereo camera pairs, are not appropriate for many miniature robots.
Additionally, odometric estimates tend to get worse as the robot becomes smaller since its wheels are likely
to slip more as well as being severely affected by distortions in the surface that it travels over.

A method for performing localization and map construction with sensor-poor robots has been proposed
in which several maximum likelihood-based estimators, such as batch methods and the recursive Kalman
filter, have been formulated to relax the assumption that our sensors return metric distance information to
landmarks. To accomplish this, a conventional sensor modality is converted into a “virtual sensor” which
is used to determine whether the robot has returned to a location that it has visited before. Using this
methodology, landmarks are designated by their sensor signatures and indicate locations the robot has
visited. The virtual sensor is both the strength and the weakness of the method as it allows correlations to
be found between locations that the robot has visited, but global metric information, such as orientation,
can be difficult to capture. As shown in the experimental results, the local structure of the landmarks
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Figure 11: The path of the robot through the office environment.
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Figure 12: Real world experiments in an indoor environment (scale is in meters). Landmarks in the true
path occur wherever there is an intersection in the path. Positions in the path are labeled chronologically.
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Figure 13: Comparison of the means and standard deviations of the two estimators on datasets with varying
degrees of encoder error. Standard deviation of errors ranged from 10 deg /sec to 120 deg / sec.

can be recreated, but there can be global misalignments in rotation that can be corrected by incorporating
additional information such as the known global position of one of the landmarks. The effectiveness of this
algorithm has been illustrated on simulated and real world data.

Experimental results are presented throughout this paper both in simulation and using a miniature
mobile robot with an omnicamera in an indoor office environment. As it traverses the environment, the
robot’s path is reconstructed using the estimators developed in this work and the results are compared. The
results demonstrate that both these estimators are capable of reducing the error in the robot estimates of
its path even when the odometry is very poor and the only sensory information available is in the form
of location signatures. Furthermore, our studies show that the linearized maximum likelihood estimator
produces the best results. The Kalman filter is fairly close in estimate quality until the robot’s odometric
error exceeds a threshold at which point the estimation quality of the Kalman filter decreases significantly.
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