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Abstract

This paper proposes an algorithm that, given a time intexmdlthe positions of peo-
ple’s faces located by a face detector, automatically deters the number of people
present at a meeting. It should be noted that such a facetdetften times produces
noise and false positives, rendering the analysis of itgltesicreasingly difficult. In
any given frame, false positives may appear, and legitirfeates can go unnoticed,
which calls for the use of statistical methods in the aldponit

Exploiting clustering patterns based on temporal and apalipnments of the de-
tected faces, our algorithm employs the expectation-miagition (EM) algorithm [4]
for mixture models and K-Means clustering algorithm [8]. eTBaussian mixture
model [2] is used to estimate the probability density fumetof the data points; its
parameters are then optimized using the EM algorithm, wpes®rmance is in turn
enhanced by its joint use with the K-Means algorithm. Alsp plerforming random
restarts in the final model verification stage of the alganmitidifferent estimates are
sampled using different parameters, and the most consigt&ult is chosen, under the
assumption that an incorrect parameter set will have iristar fitting.

The results from this combination of algorithms and the danaining data set
indicate the existence of the optimal set of parametersgtatuces estimates with
locally minimum standard deviation and percentage error.

Finally, a stand-alone module will first be trained with aadaet for which the
ground truth is available for calculation of percentagemsrit will also implement an
automatic, but simplified, model verification procedurehwtie parameters obtained
from the data set.
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Part |
Introduction

CAMEO (Camera Assisted Meeting Event Observer) is a harelaad software phys-
ical awareness system to record and monitor people’s tesivin meetings using a
person-specific facial appearance model (PSFAM) for rapitking and identification
of people [5]. While generating a omnidirectional video aithe meeting at 15 fps,
CAMEDO tracks human faces by correlating the candidate lmegin the current frame
with those in the previous frames.

The problem being addressed in this project, however, isterthine the number of
people present at a meeting, not to track human faces, whitirates an economical
alternative approach without tracking and person-spefifie recognition capabilities.
It must be noted, though, that the task is not trivial, takimgp account the imper-
fections within any face detection algorithm, which credtdse positives. So simply
counting the number of detected faces in each frame doesecessarily accomplish
the task; on the other hand, an overlay of multiple conseetditames is bound to dis-
play a pattern - namely, clusters of points - despite thegmes of noise, under the
assumption that people are seated and thus stay relattedilyrary for the duration of
the meeting. Then, in order to account for the noise and lederback to the patterns
displayed in previous frames, it becomes necessary to gngdtistical methods in
the analysis of the data. In particular, statistical methoapable of identifying the
clusters and evaluating the goodness of the clusterindy asache K-means cluster-
ing algorithm [8] and expectation-maximization (EM) [4balithm, are examined. To
illustrate this alternative approach, Schneiderman’s fietection algorithm [9] is ap-
plied off-line after CAMEO has recorded the meeting on ev@ngle frame with no
correlation between any frames.

Part Il
Related Work

The advantage of the Gaussian mixture model is its abiligcmount for the outliers,
whose presence is degrading to the overall quality of thsteting. Rather than in-
vestigating outliers as a byproduct of a clustering algonitChiu and Fu [7] articulate
the detection of outliers themselves, even in the case ofipteyl overlapping clus-
ters. However, their algorithm requires that the user $peébe number of intervals
to be partitioned in each dimension beforehand, which makesattractive for use in
noise filtering in the current project, since its overhead mvall be equivalent to the
overhead of the entire model verification procedure.

Elkan and Hamerly [3] discuss several improvements on timekns and the Gaus-
sian expectation-maximization algorithms such as thefkzaneans and the k-harmonic
means algorithms and present a new set of such algorithmoul@erform both k-
means and the Gaussian expectation-maximization algwsithNonetheless, the k-



harmonic means algorithm, by definition, receives a parametypically p > 2. The
algorithm in turn uses it as the exponent in computation affoamic means, which can
be computationally expensive for large

Part Il
Approach

1 Visual Reconstruction of Data Points

Once all the points are overlaid and plotted on a 2D gridedéfiit clusters of points
indicate highly probable positions for different faces iframe. Then the objective at
hand becomes locating and counting these clusters.

It is necessary to visually reconstruct the data points dtepto first verify the ini-
tial assumption on clustering pattern and then determiaéyiies of algorithms to use.
Hence, the following three diagrams are constructed:

1. An X-Histogram, with the x-coordinates of the detectezkfaon the x-axis and
the frequency on the y-axis,

2. An Y-Histogram, with the y-coordinates of the detectetkfaon the x-axis and
the frequency on the y-axis, and

3. Asimple 2D plot of the face positions.
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Figure 1: X-Histogram

The overlay of the data points from the entire clip, as show8,idoes exhibit
some clustering pattern, yet it is also useful to be able szoke changes in clustering
patterns as the meeting proceeds. The scrollbars enableséngo specify the time
interval, or the range of frames, to overlay.
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Figure 3: 2D Plot

2 Mixture Model

With the initial assumption verified, the Gaussian mixturedel [2] is then employed
to estimate the probability density function of the datangsi For the sake of com-
pleteness, the algorithm is summarized below.

Probability density estimation is essentially searchimg space of parameters to
find the most likely probability density functiop(x) from a set of sample points
X", n = 1,---,N drawn from an unknown function. A mixture model is a particu-
lar form of semi-parametric estimation of probability digyscreating a general class
of functions with a set of parameters whose size is indepdrafahe size of the data
set.

For instance, consider a model with a probability densitycfion which derives
from a linear combination of basis functions and with the number of basis func-
tions, as a parameter. Hence, the probability density fonés expressed as a linear
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Figure 4: 2D Plot of face positions at different time intdsva

combination of basis functions, or component densji{g$;) in this case, as

M

p(¥) = p(5)p(x]j)-

j=1

wherep(x) describes amixture distribution and the coefficient(j) are themixing
parameters, or theprior probability that the data points originate from compongot
the mixture. Intuitively, the following hold for the mixingarameters:

M
Zp(j) =1

0<p@y) <1

The component density functiopéx|;j) are likewise normalized:

/ p(X[j)dx = 1

2.2.1 - Gaussian Mixture Models [2]

The basis functions are the components of a mixture dengtieinwhose param-
eters must achieve maximum likelihood through optimizatd/e therefore model the
density of the input data by a mixture model of the form

M
PO = " p(7)5(9

where the mixing coefficients(;j) determine the proportion af;(x) included in the
mixture model and;(x) are the basis functions.

The parameters of the basis functions can then be computssléstimation pro-
cedures based the application of the EM algorithm on maétitr of the likelihood,
which is discussed in the next section.



3 Expectation-Maximization (EM) Algorithm

EM is used to find the maximum likelihood estimates of paramsein probabilistic
models, which depend on unobserved, or missing, laterabi@s. In particular, EM is
an iterative approach to achieving the maximum likelihobthe parameters [2].

EM alternates between the two steps: The expectation stegyathe expected val-
ues of latent variables are computed, and the maximizatep) shere the maximum
likelihood of the parameters are computed from the givea datl the latent variables
are set to their expectations.

The general description of the algorithm is as follows:

Lety be the observed variables and dte the latent variables.

Let p(y, z|0) be the joint model of complete data with parameters

Let Q(0]6") be the expectation of the parametéigiven’; in other words, the expec-
tation with respect to the probability densjiyy|z, 6’) :

Q010") = Eflogp(y,z(0)|z,0']
= Y llogp(y, 2[0) - plzly, 0]

z

Following the procedure below, the EM will then iterativatyprove the initial estimate
0 and construct new estimates:

1. Seti = 0 and choosé; arbitrarily.
2. ComputeR(016;).
3. Choos#, 1 so that it maximizeg)(0|6;); that is,

0;y1 = arg énax [Q(010:)]

and thend,; is the value maximizing the expectation of complete data log
likelihood with respect to the conditional distributiontbe latent data.

4. If 0; # 0,41, then set); = 6,1, and return to step 2.
It is important to note the following two facts about the EMration:

e |t can be shown that an EM iteration does not decrease thewaukdata likeli-
hood function; that is,

p(ylOiv1) > p(yl0:)

¢ The fixed, data-dependent parameters of the funci@ne calculated in the first
step of the procedure. The function is fully determined ahey are known and
is maximized in the maximization step.



4 EM Algorithm for Gaussian Mixture Model

It is also important to note that EM is a description of a clafs®lated algorithms and
not a particular algorithm; EM is a skeletal structure fdrastmore specific algorithms.
Combining 2 and 3, an application of EM arises in determirimgparameters of the
basis functions of the Gaussian mixture model, given thebmainof classes to start
with [2].

Assuming each Gaussian component has a covariance maitiis th scalar mul-
tiple of the identity matrix (no correlation between anyrpafi different random vari-
ables), it has the form

(X =
=)

(QWUJZ)d/Q ) exp(— 20]2

p(X[j) =

And the negative log-likelihood for the data set is definetbiews:

N N M
E=-lnL=-)Y Inp(x")= Z Z (x"[)p(5)]

Remember that the EM is an iterative procedure; lettiff’ be the probability under
the new parameter values apd? be the probability under the old,

new XTL)

Erew _ Eold Z 11’1
old Xn

According to the definition of the mixture distribution givén 2,

AE = E"ew _ Eold
2 P ()P (X 3)
- Z In o (xn)
B B Z pnew ( >pnew (Xn |.7 (] |Xn)
R C Rt O

Jensen’s inequality states that; > 0 such thad >, A\; =1,
Z Ajln(z;) <In [Z Ajz;]
J J

Noting in the definition oft that . p°'(j|x) = 1,

AE = Enew _ Eold < - old J X" new (j)pnew (Xn|])
Z; [p ‘ old(xn)pold(j|xn) }

Letting @ be the right-hand side of the equation, the upper bound on is

Erew S Eold +Q



Recall thatE represents the negative log-likelihood; in order to mazarthe likeli-
hood, £ must be minimized, which necessarily follows a decreas@.ir-or the
sake of simplicity, consider the quanti€y which contains the terms @) that do not
depend only on the old parameters.

QV - _ Z Z pold(j‘xn) In [pnew (j)pnew (X" |j)]

Since the distributiomp of interest is a Gaussian mixture model,

n new ||2
A ld/ :|vn new [ new HX B 'U'J ||
Q—-;;po (JIX")[Inp"“*(j) — d-Ino} _72(07;%;)2 ] + const

J

It now remains to differentiate and minimi@ with respect to the new parameters
wye, (a}ww)Q, andp(j)"<* to get the EM update equations for the mixture model.

Note that in minimizing@, the method of Lagrange multipliers is used with the con-
straintthay~ ; p°'“(j|x™) = 1, leavingQ + A(>_, p"** (j) — 1) for differentiation with
respect tp™<"(5), which givesh = N, the number of data points.

urer = M
J anOld(ﬂX”)
(O.new)Q _ lznp‘)ld(ﬂx”)ﬂxn _ u?ew‘|2
’ d Zpold(j|xn)
. 1 )
pnew(]) — N ZpOld(]|Xn)
n

whered is the number of components or variables considered in thdemo

The actual implementation of 4 implements these updatetieqsafor each Gaus-
sian component class. It also includes an additional clalgsaxfing uniform distribu-
tion to account for the outlying points that practically dat belong to any of the other
classes - those having equally low likelihood in all the ottlasses - thereby reducing
the negative effects of the noise which might otherwiseritette the quality of the
outcome.

The implemented EM module is based on the K-Means demoiastrapplet by
Akaho [1]. Although 4 intuitively seems well-suited for theoblem, it soon becomes
obvious that random initial distribution of classes oftexes not lead to an accurate
localization of the clusters, not to mention the need to dpeethe algorithm, which
entails appropriately positioning the classes rather thsinstarting off at random lo-
cations. A second algorithm is needed; more specificalliystering algorithm which
can partition data points into different clusters and metine representative points, or
the mean points, to be used in the initialization of the EMsséss.

Having specified the desired features of the new algorithi algorithm consid-
ered next is the K-Means clustering algorithm.



5 K-Means Clustering Algorithm

K-Means clustering algorithm [2, 8] is an algorithm for p#eohing N data points
x’;1 < i < Ninto K disjoint subsets;; 1 < j < K containingN; data points while
minimizing the sum-of-the-squares erdor

K
BE=3" 3 X"yl

j=1nes;j

wherey; is the mean, or the geometric centroid, of theS$gtwhich is computed by

1
Mj:ﬁzxn

7 nes;

and is updated using
Apj =n- (X" = ;)
wheren is thelearning rate parameter.

The implemented K-Means module is based on the K-Means demadion applet
by Matteucci [6]. Now we are able to compute the mean poiniswe still have no
information about the approximate size of each cluster.réfeioto appropriately size
the Gaussian mixture classes, the following values areetkethe variance of the x-
coordinate, the variance of the y-coordinate, the covadafithe x- and y-coordinates,
and the standard deviations of the x- and the y-coordindtédseadata points in each
cluster - which calls for the computation of2ax 2 covariance matrix (of x- and y-
coordinates) in the K-Means module.

After the module has computed the mean points and the appabdgisize of each
cluster, the information is retrieved and passed to the EMut®in order to position
and size the Gaussian mixture classes accordingly. Thétgeme satisfactory; the
proper positioning and sizing of the classes improves bothaccuracy and the run-
time significantly. It would be useful to color each point aating to the cluster it
belongs to. The implementation of this feature is relagivalial, partly because it is
partly a feature of the original K-Means module, and no farttomputation is needed
to pass the necessary information to the EM module.

6 Model Verification

The objective of this project is to automatically deterntime number of people present
at a meeting. However, up until this point, despite the enbarents made to the K-
Means and the EM modules, the user still has to specify thebeummf mean points
K before running the K-Means module and re-run the algorithitil the result visu-
ally shows an acceptable partitioning of the points. In otdeautomatize this crucial
step, a proper method for model verification must be deviskd.following two terms
are hereby explicitly defined to refer to the specific feadwokthe verification proce-
dure. The readers may also find it helpful to refer to the flawtHenoting the model
verification process at the end of the paper (Figure 23).



For k k-means classes
Do 7 k-means runs with k classes
Pick the best set of mean points (maximum initial EM likeblddp

n first EM Runs

Take the run with the greatest likelihood
End For

Pick the best trial (maximum EM likelihood)

Table 1: Pseudocode for initial model verification

e An n'" trial refers to the collection of subroutines performed witkK-means
classes.

e Each subroutine includes the notionrohs, or the iterations of the K-Means or
EM module.

6.1 Initial Approach

Since, when automatized, the modules will have to run orr thenh and not neces-
sarily report the results back to the user after every singte a character-based user
interface (CUI) was added in addition to the GUI for easiandtalone, command-line
operation.

The initial layout for model verification is as follows, anggseudocode implement-
ing the layout is presented afterwards:

1. Receive from the user the following, the maximum number of classes for the
K-Means module to attempt up te,; the number of K-Means runs; and the
number of EM runs, and the desired EM accuracy.

2. Foreach run of K-Means, look at the number of points coethin each partition
produced by K-Means and choose the trial withlihveest standard deviation (in
the number of points in each partition).

Nonetheless, this approach is flawed because the K-Meanalenddes not ac-
count for the outlying points, or the noise, like the EM maadbes with the additional
uniform class, and low standard deviation - or low diffeendetween the number
of points in each partition - do not necessarily correlata tmetter partitioning; even
though it is generally the case that the K-Means algorithesdend to partition the
data into disjoint sets of approximately equal size, theieht randomness in the ini-
tialization of the mean points in the K-Means module mustaben in to account, not
to mention the fact that the final positions of the mean paintsdetermined geometri-
cally and the sizes of each set may very well be unequal, diégpgon the initialization
the mean points. Also note that although on a given inter@eheluster may contain
similar number of points due to the facts that the same numiygzople are presentin



the interval and that the face detection algorithm workenfeby-frame, the presence
of noise in the face detection algorithm as well as the pdigibf occlusion must be
taken into account as well.

6.2 Devising an Improved Method for Model Verification
6.2.1 Evaluation of K-Means Partitioning by Initial EM Likel ihood

Successful selection of the most appropriate K-Meanstjeanithg is influential to the
final answer that the program will produce; the evaluatiorpaititioning must in-
corporate the issue of whether the partitioning separatésaptures each distinctive
clusters with a high probability, which is precisely the sfien the Gaussian mixture
model addresses, and the EM module in fact quantifies thigyaa likelihood. Thus,
an improved evaluation of K-Means partitioning is obtaitgdpassing the partition-
ing information to the EM module and then retrieving theialitikelihood value that
it computes. To illustrate the improved performance of thigal EM likelihood eval-
uation, a meeting clip is processed using both the standandtibn method and the
initial EM likelihood evaluation. Figure 5 shows the oriatibn of the data points of
the 5 people’s faces throughout this particular meetinglera shows the results of the

> 20Plot Display B=x<
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Figure 5: Meeting clip used for comparisdglusters

comparison. The lowest standard deviation value appe&mlihin standard deviation
column. Likewise, the greatest initial likelihood valuepagrs in bold in initial like-
lihood value column. As the table shows, the two boldfacddesdo not appear in
the same row. It also shows that, in this particular expemimthe standard deviation
method actually led to the wrong conclusion by the program.

10



Run | Std Devin| Initial EM | Correctly Spotted
# Points Likelihood All 5 Clusters
1 26544.54 | -11.7049049 FALSE
2 26445.77 | -11.5552135 TRUE
3 24044.43 | -11.6530598 FALSE
4 26444.75 | -11.5553968 TRUE
5 34630.97 | -11.8339914 FALSE

Table 2: Comparison of Standard Deviation and Initial EMdlikood Evaluations

6.2.2 Controlling the Sampling Rate

Also crucial to the quality of the final answer is the presevfo®ise; a desirable proce-
dure would effectively reduce the amount of noise presetitérdata while preserving
the unique patterns in the orientation of the points, themeserving the clusters as
well. One way to reduce the noise is to reduce the number oplesmve take. Under
the assumption that people in a meeting are generally stagipa small decrease in
the sampling rate does not significantly distort the clisstert reduces the frequency
and the probability of sample noise.

For the purpose of this project, two different sampling saté fps and 15 fps - are
experimented with.

Figures 6 and 7 illustrates the samples obtained from the $agffile with different
sampling rate; left two and right two are obtained from thmea@mages, respectively.

6.2.3 Dividing the Entire Clip into Subintervals

A question directly following 6.2.2 is whether the clusteyipattern is lost when all
the data points are overlaid onto a single frame. It is asduhet people at a meeting
remain generally stationary; nonetheless, it is still gaeshat people move around
and change seats so as to disturb the clustering pattere iorilg run, not to mention
the cases in which people leave the meeting or new peopldljeimeeting. Hence,
it makes intuitive sense to examine the whole clip in subbiaks; a subinterval is
bound to contain less moments of significant movements, isenand focusing on a
subinterval rather than the entire clip corresponds to @xiaign a smaller set of data
points, thereby preserving the local characteristic ofdduz.

For the purpose of this project, five subintervals of diffédengths - 10 seconds,
30 seconds, 60 seconds, 100 seconds and the entire clip x@Bneented with. It
should be noted that the number of frames each subintermgdios is dependent on
the chosen sampling rate; that is, a 10-second subintertdpa contains 150 frames,
whereas a 10-second subinterval at 15 ftp contains 10 frames

11
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6.2.4 Running a Second EM without Overlapping Points

One thing that may not be apparent upon initial inspectiothefK-Means partition-
ing is whether any of the clusters overlap with one anothetha K-Means module
produces only the mean points of the clusters. Overlapgingers correspond to an
uncertainty in the identification of clusters and must adirayly be accounted for in
the final answer. It must be noted that just a mere removaleptints contained in
the intersections of clusters does not resolve the issuilusssated in Figures 8 and
9, removal of overlapping points can result in a change inlikedihood value or an
EM failure, especially for aubcluster - a cluster that is completely contained within
another.

Detection of Overlapping Points Each EM class is an ellipse, whose lengths of the
axes are determined by the standard deviations aftlznd they-coordinates of data
points and whose orientation of the axes are determinedeya¥bariance between the
two coordinates.

The covariance matrix reveals the lengths (and the orienfabf the major and the
minor axes, and, by the property of ellipsesthe distance from the center to either
foci, is

2 = -

c = +a?—b2

12
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s Likalhao= -0.0280651 07850762 s Liathoos= Nt

Mean Likelihood: -9.599065107880762 Mean Likelihood: NaN

e O foves oo i fin fio [faovesiros e

o s s s | || . aurn wsw | msm || weews | ]

Figure 9: Before and after removal - EM failure (NaN likeldd)

where2a and2b are the lengths of the major and the minor axes, respectivatyher,
it is possible to completely determine the locations of fasiwell as the lengths of
major and minor axes, and any point such that

(Sum of distances fromthe foci) < (Length of mmjor axis)

falls within the boundary of the ellipse or the class, in tase. The overlapping points
can then be detected by keeping track of the number of cléisatsach point belongs
to.

Weight Function In order to appropriately process the effect of the remof/aler-
lapping points (since the removal of overlapping pointssdoet always entail an in-
crease in likelihood), the relative significance of the effaf the removal is quantified
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by defining a weight functiop(i). Let N,,,,.. be the maximum number of overlapping
points in an arbitrary trial, and l€Y; be the number of overlapping points frath EM
run. Thenp(7) is defined as follows:

N; .
N . Nmuw > 0
otherwise

Note again that, ifV; = 0, thenp(i) = 0, and if N; = N,,,q., thenp(i) = 1. Based on
p(i), a new likelihood valud.,,.., is computed by mixing the likelihoods prior té{)
and after {;) the removal using the following equation:

Note that, ifp(i) = 0, thenL,,.,, = L1, and ifp(i) = 1, thenL,,c,, = Lo.

Eliminating a Fixed Upper Bound for the K-Means Module As the number of
K-Means classes increases, either an EM failure is mordylikkeoccur, since each
class is assigned less points, which degrades the perfomudithe inherently statisti-
cal algorithm, or the occurrence of overlapping points imfe of subcluster becomes
more probable. A pre-set arbitrary constg@mtetermines the maximum number of EM
failure allowed in a trial; that is, a trial will stop upon doonting thent” EM failure.
For the purpose of this projecf,has been experimentally determined to be 3.

7 Putting It All Together

The following pseudocode in Table 3 implements the imprawedel verification pro-
cedure, which is also illustrated in the flowchart at the entth® paper (Figure 23):

Part IV
Results and Findings

The logdfile used in the first two parts of this experiment (dttéfaces.txt, 2,197,222
bytes) has been prepared by Dr. Paul Rybski. Figure 10 is d@®pall faces in the
lodfile.

As it appears in Figure 10, there are three readily identdialusters, with a consid-
erable amount of noise present in the data set. We label the tusters\, B andc,
respectively, from the left.

To illustrate the improvements made on the performancesEt module by ini-
tializing the EM classes to the mean points returned by Kideaodule - which shall

14



For each time interval
For k k-means classes
Do i k-means runs with k classes
Pick the best set of mean points (maximum initial EM liketidd

n first EM Runs
Detect and remove overlapping points
n second EM Runs

Determine the two maximum EM likelihoods from the first
and the second EM runs, respectively

Compare and process the max likelihood values of the twausin
the formula and the weight function

The final EM likelihood is then determined for this trial
End For

Pick the best trial (maximum final EM likelihood)
End For

Table 3: Pseudocode for improved model verification process

< 2Plot Display ==ks
() CAMEQ Text Logfile _2DPlot: total frame range (1, 8970)

69

129 T

209 '

A
219 B
0 248 496 144 993
X VS. ¥

Lower Bound (Min; 1) | |UpperEound (Max; 8970)
Scrollbar Increment |LL| (3

Figure 10: 2D Plot of the logfile with all three clusters ldbél
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Run #EM #EM Correctly spotted Mean
Resets| Iterations clusters likelihood

1 0 70 A ONLY -9.76345

2 0 77 A ONLY -9.76344

3 0 76 A ONLY -9.76344

4 0 64 A ONLY -9.76345

5 1 65 A ONLY -9.76345

6 0 25 C ONLY -10.39017

7 0 87 A ONLY -9.76344

8 0 71 A ONLY -9.76345

9 0 67 A ONLY -9.76345

10 0 70 A ONLY -9.76345
Average A 67.2 - -9.82612
Std Dev 3 15.5 - .18802

Table 4: Result from Plain EM Procedure

now be called th&M from K-Means procedure - a comparison of the performances of
the two procedures is presented: Than EM procedure using only the EM algorithm
and theEM from K-Means procedure. Also, the desired accuracy of the EM module
in both procedures is empirically settd x 10~° and the number of classes to 3, the
ground truth.

The EM module is designed to be robust, implying that it waelket upon encoun-
tering an invalid likelihood value such as infinity or NaN.eltermEM Resets used in
the tables below refers to this behavior of the program.

Theplain EM procedure is examined first.

8 Plain EM Procedure

As it appears in Table 4, the plane EM procedure spots clustarrectly with prob-
ability Pri{a}] = % = .9, and the standard deviation of the likelihood valued &S,
which is very large compared to the desired accurafyx 10> specified. In the 10
runs conducted, it never spots all three clusters simuttasig. Also, the number of
EM iterations fluctuates greatly at the average of aboutdations with the standard
deviation of15.5; the EM module, as per the definition of the EM algorithm, uses
random initialization of classes, and it is clear from thpemmental data that the be-
havior of the EM module, indicated by the number of iterasiodepends heavily on
the initialization of the classes.

Next, a similar set of experimental data is obtained fritwnEM from K-Means
procedure and is analyzed. The data from tBM from K-Means procedure is twofold,
consisting of the K-Means and the EM portions. To best ithtstthe data, three inter-
related tables are presented - one table containing this&sum the K-Means portion
of the procedure, a second one displaying the consisterttyeimean points returned
by the K-Means module, and another table containing thdtssfsam the EM portion
of the procedure.
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Run # K-Means| # K-Means| z; Y1 o Y2 T3 Y3
Resets Iterations

1 0 13 782 | 120 || 204 | 152 || 495 | 148

2 0 15 782 | 120 || 204 | 152 || 495 | 148

3 0 11 495 | 148 | 204 | 152 || 784 | 120

4 1 15 495 | 148 || 204 | 152 || 784 | 120

5 0 9 495 | 148 || 204 | 152 || 784 | 120

6 2 13 782 | 120 || 204 | 152 || 495 | 148

7 2 19 204 | 152 || 782 | 120 || 495 | 148

8 1 15 204 | 152 || 495 | 148 || 784 | 120

9 1 13 495 | 148 || 784 | 120 || 204 | 152

10 0 11 204 | 152 || 782 | 120 | 495 | 148
Average v 13.4 - - - - - -
Std Dev .8 2.7 - - - - - -

Table 5: Initial Results of K-Means Algorithm

Itis important to keep in mind that the K-Means module reggithat the user spec-
ify the maximumk for the algorithm and that it is the user who determines wéretne
partitioning is acceptable upon visual inspection; if itnist, the user resets the K-
Means and runs the algorithm again. The tétrvieans resets refers to this action on
the user’s part. Thé is 3 in this case, since there are 3 clusters of interest winese
points need to be identified. The quantitiesy; Vi; 1 < i < k respectively refer to
the x- and the y-coordinates of the mean point identified by‘thclass.

9 EM from K-Means

9.1 K-Means
9.1.1 Initial K-Means

The K-Means module, on average over the 10 runs, require®xdpmately 1 man-
ual reset, and each run costs about 13 iterations with thmelatd deviation oR.7.
Although not as heavily dependent as the plain EM procedbesperformance of K-
Means module, indicated by the number of iterations, doper on the initialization
of the class points, which is also randomly done accordinfpéadefinition of the al-
gorithm. Moreover, the module produces consistent refludtisare also correct, given
that the produced result is visually acceptable; althotgialy be hard to notice at a
glance with the same classes occasionally spotting diffelasters, it is clear in Table
(6), in which the mean points are rearranged according taltigersa, B andc, that
the results are indeed consistent, with 0 as the standaratides of all the coordinates
except that of the x-coordinate of the third class, whichis 1
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TA YA B YB rc yc
204 | 152 || 495 | 148 || 782 | 120

204 | 152 || 495 | 148 | 782 | 120
204 | 152 || 495 | 148| 784 | 120
204 | 152 || 495 | 148| 784 | 120
204 | 152 || 495 | 148 | 784 | 120
204 | 152 || 495 | 148 | 782 | 120
204 | 152 || 495 | 148 | 782 | 120
204 | 152 || 495 | 148| 784 | 120
204 | 152 || 495 | 148 | 784 | 120

10 204 | 152 || 495 | 148 | 782 | 120
Average || 204 | 152 || 495 | 148 || 783 | 120
StdDev| O 0 0 0 11, 0

@CO\ICDU'I-P(AJI\)I—‘?_-U
S5

Table 6: Mean points rearranged

Run #EM #EM Correctly spotted Mean
Resets| Iterations clusters likelihood
1 0 19 A,B,C -9.43208
2 0 19 A,B,C -9.43208
3 0 20 A,B,C -9.43208
4 0 19 A,B,C -9.43208
5 0 23 A,B,C -9.43207
6 0 20 A,B,C -9.43208
7 0 22 A,B,C -9.43207
8 0 21 A,B,C -9.43207
9 0 19 A,B,C -9.43208
10 0 20 A,B,C -9.43208
Average 0 20.2 - -9.43208
Std Dev 0 1.3 - 4.58607 x 1076
Table 7: Results: EM from K-Means
9.2 EM

The results from the EM module consist Table 7, and the imgar@ants on its perfor-
mance, compared to the plain EM procedure, is readily obbégy With no resets,
the EM module is able to spot all the three clusters of inteséth an average of ap-
proximately 20 iterations and the standard deviation of &l8ng with a consistent
mean likelihood,—9.43208, whose standard deviation,58607 x 1079, is less than
the desired accuracy,0 x 10~°, whereas the plain EM procedure is unable to spot
all the three clusters at once, not to mention the fact thetsts more iterations and
still produces less precise and less consistent resultshdrt, theEM from K-Means
procedure produces results that are superior to those ofpthen EM procedure with

the only drawback of additional runs of K-Means module.
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9.3 Images

Figures 11 and 12 are the screenshots of the K-Means and thredMles before and
after run, respectively.

& Kmeans: total frame range (1, 8970)

#of Classes: |3

[ | [0 ] [0 gl |
& Kmeans: total frame range (1, 8970) g@

i | [sera ] [m0 | <] o

Figure 11: Images of K-Means module, before running (top) after (bottom)

10 Demonstration of Initial Model Verification

The initial verification module described in 6 is called witke following parameters:
e 10 as the maximunk’,
e 10 K-Means runs,
e 1 EMrun, and

e 1.0 x 107° as the desired EM accuracy.
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& Stats: Mixture Expectation Method: total frame range (1, 8970) BEX]

IMean Likelihood = -11.232686719639307

0.07682307697307 623

N -Z___-

[t [ [eere | fros | frcielinooa piference: 1 02-4]

Bir | [ s || emrsen || wwewss | <] bl

‘& Stats: Mixture Expectation Method: total frame range (1, 8970) BEX]

IMean Likelihood = -0.432072336580018

I [ oo [ i | iwtnood sireree: 024

Figure 12:

[ s || emrsen || wwemss | < L

10 separate cases of model verification are examined ancdegdts collected,

which appear in Table 8.

It is obvious from Table 8 that the method is flawed; it preslitiat, on average,
there are approximately 9 people, or clusters, when onbetlare most obvious. The
presence of a considerable amount of noise contributeg tiaiflare of the method; Ta-
ble 9 is the output of model verification run 5, and Table 13sgiraphical illustration,
in which it appears that the likelihood values, as a functibthe number of people (or
clusters) is an increasing function, although not strictreasing. It seems as though
the increased number of classes help the module accouttefordise by fitting to the
noise in order to achieve a higher likelihood, for the K-Mgamdule does not account

for the noise with an additional class like the EM module does

20
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Case Estimated # People Likelihood

1 9 -9.07532

2 10 -9.09858

3 10 -9.08081

4 8 -9.12187

5 9 -9.04930

6 10 -9.05531

7 8 -9.05994

8 9 -9.04077

9 10 -9.04076

10 9 -9.07309
Average 9.2 -
Standard Deviation .75 -
% Error -206% -

Table 8: Final Results
Conclusion

Likelihood of presence of 1 people
Likelihood of presence of 2 people

Likelihood of presence of 9 people

Procedure done. Exiting...

Likelihood of presence of 3 people :
Likelihood of presence of 4 people :
Likelihood of presence of 5 people :
Likelihood of presence of 6 people :
Likelihood of presence of 7 people :
Likelihood of presence of 8 people :

:-11.175263033684
: -10.202015003943
-9.7136059419906
-9.6508428125815
-9.6381437614480
-9.2367911819138
-9.6398634911728
-9.0904637930305
1 -9.0493035465349

Likelihood of presence of 10 people : -9.115866153472

Estimated number of people present: 9

522
165
16

D2

L
48
87
3
D3
L7

Table 9: Sample output of a model verification case (Case 5)

11 Improved Model Verification

The improved model verification procedure is designed taicedhis fallacy of the
initial model verification method. It is invoked with the folving parameters. Note
that the maximunm’’ K-Means classes is not given, since it is now automaticasly d

termined.

e Unchanged parameters
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Sample output of a model verification run
-9 :

-9.5f

_10,

-10.5¢

Likelihood

_11,

-11.5 : : : :
0 4 6
# People

Figure 13: A Graphical lllustration of (2): # People vs. Likeod

— 10 K-Means runs,
— 1EMrun, and
— 1.0 x 107 as the desired EM accuracy.

e Varied parameters

— Sampling rates: 1 fps, 15 fps

— Interval lengths: 10 seconds, 30 seconds, 60 seconds, ¢60dse and the
whole clip

5 separate cases of model verification results are obtasregbth sampling rate
and interval length pair, and the results are collectedifeniext three new lodfiles, fol-
lowed by the sample screenshots of each video clip. Notdghbkatbsolute percentage
error is computed as

Result — GroundI'ruth

| GroundTruth

x 100|

e Clip 1, 03m 47s, 5 participants

e Clip 2, 30m 38s, 5 participants

e Clip 3, 49m 40s, 8 participants
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Figure 16: Screenshots: Clip 3, 49m 40s, 8 people

11.1 Clip1

Table 10 shows the results from this clip. In addition, thikofeing plots (Figures 17
and 18) show graphical analysis of the standard deviatidrabsolute percentage error
of the estimated number of people (from the left) for varyimtgrval lengths.

First note that this video clip is relatively short, sparamly about 4 minutes, and
contains 5 people. For the simple averaging method, notétéanost accurate results
are observed with 60-second intervals for both sampliresradth the percentage error
of 8%, and the estimation results are fairly consistent whth standard deviation of
.547722558. Note also that the higher sampling rate of 15 fps does ngialisany
clear indication of improved performance, compared to twults obtained at 1 fps
sampling rate.

However, keep in mind that due to the presence of statistigatithms, a sample of
reasonable size is needed in order for the entire procedieiave as it was originally
designed to.
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Interval Estimated # People Estimated # People
Length (sec)|| at Sampling Rate 1 fps at Sampling Rate 15 fp
(Average) (Average)
10 5 4
10 4 3
10 4 4
10 4 4
10 4 4
Average 4.2 3.8
Std Dev 0.447213595 0.447213595
% Error -16% -24%
30 7 4
30 6 4
30 6 4
30 7 4
30 6 4
Average 6.4 4
Std Dev 0.547722558 0
% Error 28% -20%
60 6 5
60 5 5
60 5 6
60 6 6
60 5 5
Average 54 54
Std Dev 0.547722558 0.547722558
% Error 8% 8%
100 7 6
100 4 5
100 6 5
100 5 6
100 6 5
Average 5.6 54
Std Dev 1.140175425 0.547722558
% Error 12% 8%
Whole Clip 4 8
Whole Clip 2 11
Whole Clip 2 8
Whole Clip 4 9
Whole Clip 4 11
Average 3.2 9.4
Std Dev 1.095445115 1.516575089
% Error -36% -88%

Table 10: Result:
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Clip 1 - Simple Averaging at | fpt Clip 1 - Simple Averaging at 1 fpt

Standard Deviation
Abs. % Error

100 Whole Clip T 30 Whole Clip

60 100
Interval Length

60
Interval Length

Figure 17:Clip 1, 03m 47s5 faces 1 fps - Std Dev and Absolute % Error

Clip | - Simple Averaging at 15 fpt

Clip I - Simple Averaging at 15 fpt

16

a0

Abs. % Error

Standard Deviation

10 W 6 100 Whole Clip 10 30 6 100 Whole Clip
Interval Length Interval Length

Figure 18:Clip 1, 03m 47s5 faces 15 fps - Std Dev and Absolute % Error

11.2 Clip 2

The improved verification procedure is performed this tinina larger clip, which is
30 minutes long. Table 11 shows the results from this clipaddition, the following
plots (Figures 19 and 20) show graphical analysis of thedstahdeviation and absolute
percentage error of the estimated number of people (frorteftjdfor varying interval
lengths.

For the simple averaging method, note that the most accresatéts are observed
with 60-second intervals for the sampling rate of 1 fps antth wDO-second intervals
for 15 fps, and both are also the most precise results witipé¢heentage error of 0%,
as it appears in Figures 19 and 20. It is important to remaak ow, with a larger
set of data, it becomes clear that the absolute percentegeattains a local minimum
(which is zero) at interval lengths of 60 and 100 secondsyevtiee standard deviation
also remains 0. Also notice that, with 1 fps sampling ra@ndard deviation becomes
greater than zero and the absolute percentage error olitaimscal minimum earlier
(with respect to the interval length) than it is with 15 fpsngding rate.

11.3 Clip 3

Table 12 shows the results from this clip. In addition, théofeing plots (Figures 21
and 22) show graphical analysis of the standard deviatidrahsolute percentage error
of the estimated number of people (from the left) for varyiimgrval lengths.

Note that, once again, the standard deviation and absotutempage error both
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Interval
Length (sec)

Estimated # People
at Sampling Rate 1 fps
(Average)

Estimated # People
5 at Sampling Rate 15 fp
(Average)

12

10
10
10
10
10

Average
Std Dev
% Error

OO WWWWww

1
A
=N

O O NDNDNNDNN

1
»
]

30
30
30
30
30

Average
Std Dev
% Error

%

QOO WWWWwWwWw

A

%

60
60
60
60
60

Average
Std Dev
% Error

U
N
ocuutuuougrnuoocr~hr,hrrprp

Q
S

A DMDDM

{
N

%

100
100
100
100
100

ONO O N

Average
Std Dev
% Error

6.4
0.547722558
28%

o gjortororol 0o O

3
S

Whole Clip
Whole Clip
Whole Clip
Whole Clip
Whole Clip

13
14
11
14
5

~N O N o1

Average
Std Dev
% Error

114
3.78153408
128%

6.6
1.140175425
32%

Table 11: Result:
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Interval
Length (sec)

Estimated # People
at Sampling Rate 1 fps
(Average)

Estimated # People
5 at Sampling Rate 15 fp
(Average)

10
10
10
10
10

Average
Std Dev
% Error

1
R
X

o oo o1 o1 0101

o
=S

30
30
30
30
30

N~N~NO0OANOOOO OO OO0 O O

Average
Std Dev
% Error

7.2
0.447213595
-10%

%

60
60
60
60
60

Average
Std Dev
% Error

O 00|00 00 O 00

:
S

1
N
ONNNNNAOTO OO OO O O -

KN
N
(6)]
O\O

100
100
100
100
100

0 © © 0w ©

Average
Std Dev
% Error

8.6
0.547722558
7.5%

O N~~~ ~!

-12.5%

Whole Clip
Whole Clip
Whole Clip
Whole Clip
Whole Clip

11
16
14
15
12

17
18
11
15
17

Average
Std Dev
% Error

13.6
2.073644135
70%

15.6
2.792848009
95%

Table 12: Result:
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Clip 2~ Simple Averaging at 1 fpt Clip 2~ Simple Averaging at 1 fpt

Standard Deviation

¢ 10 30 60 100 ‘Whole Clip 10 30 60 100 ‘Whole Clip
he&ml Length he&ml Length

Figure 19:Clip 2, 30m 38s5 faces 1 fps - Std Dev and Absolute % Error

Clip 2 — Simple Averaging at 15 fpt

Clip 2 — Simple Averaging at 15 fpt
1 : ;

Standard Deviation
Abs. % Error

10 30 60 ‘ 100 ’ ‘Whole Clip 10 30 60 \ 100 ’ Whole Clip
Interval Length Interval Length

Figure 20:Clip 2, 30m 38s5 faces 15 fps - Std Dev and Absolute % Error

obtain local minima at the interval length of 60 seconds uitfps sampling rate; it
indeed achieves 0 percentage error and 0 standard desatiattaneously with simple
averaging method. Although the results from 15 fps sampiatg, too, obtain local
minima at 60-second interval length, its performance isriof with -12.5% percentage
error.

Part VvV
Conclusions and Future Works

We have thus far described an algorithm to automaticallgrdgine the number of
people present at a meeting. As an alternative to the faeetitat approach of the
current CAMEO project, the algorithm is a collection of &#tal methods such as
the EM and the K-Means algorithms combined together usingodemverification
procedure.

It operates on a set of face positions to estimate the nunflaistinct, recurring
clusters of face positions while taking into account thespree of noise. Given that
the ground truth for the data set is known (the true numbereapfe present at the
meeting is known), it is possible to evaluate the resultdefalgorithm and find the
set of parameters that estimates the number with the lowastlard deviation and
percentage errors.

With the improved model verification method, the algorithstimmates the number
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Clip 3 - Simple Averaging at | fpt Clip 3 - Simple Averaging at | fpt

Abs. % Error

Standard Deviation

= &/ 100 WholeClp 0w &/ 100 WholeClp
erval Length erval Length

Figure 21:Clip 3, 49m 40s8 faces 1 fps - Std Dev and Absolute % Error

Clip 3 - Simple Averaging at 15 fpt Clip 3 - Simple Averaging at 15 fpt

Abs. % Error

Standard Deviation

R 30 W 100 Whole Clip 10 30 N/ 100 Whole Clip
fval Length Tnterval Length

Figure 22:Clip 3, 49m 40s8 faces 15 fps - Std Dev and Absolute % Error

of people consistently with reasonable accuracy for a Isegef data points for a given
combination of parameters - 1 fps sampling rate and 60-sktaarval length in the
above experiment - at which the standard deviation and theepgge error of the
estimate attain local minima.

To put it differently, it is possible to obtain the optimalt s parameters to be
used in future estimations in the training phase, in whiehalgorithm operates on the
training data set for which the ground truth is known, by deig the local minima of
the standard deviation and the percentage errors of theass.

A stand-alone module for this purpose will implement an matic, but simplified,
training mode for model verification procedure by limitirigetsearch space and adher-
ing to 1 fps sampling rate and focusing mainly on the detaadfosuch local minima
in the percentage errors.

Ideas have been suggested for further noise filtering vianeation of the y-
coordinates, based on the observation that there arerceegions of each frame that
are unlikely to contain any face. The exact locations of egiions are dependent on
the specific orientation of the meeting and the camera. Eeisnique may be imple-
mented and experimented using different parameters iruthesf.
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BEGIN

All the relevant parameters piven:

Tnterval Size

1 K-Means RUNS
n EM RUNS

EM Accuracy

CLIP
PREPROCESING
Sampling Rate Control
INTERVALS 1
INTERVAL 1 INTERVAL 2
TRIALS
TRIAL 1 TRIAL 2
K-MEANS PART
K-MEANS
[iRUNS|

CHOOSE BEST SET OF MEAN POINTS
Greatest Initral EM Likelihood

EM PART
EM
[n Pre-RUNS |

k]\'crkapping points detetion and removal
M
[n PostRUNS |

PICK GREATEST POST EM LIKELIHOOD
and associated info for weight function:
change in likelihood

number of overlapping points

STORE
sexchindex:contgiuis resilt frony comesponding wisl

i |

WEIGHT FUNCTION
Function of change i likelihood and number of overlapping points
Call the resilting fimeigon vahies FINAL EMLIK ELIHOODS

“This is the answer for this interval

PICK TRIAL NUMBER WITH GREATEST FINAL EM LIKELITHOOD

i
STORE
each index contains result from corresponding interval

|

ANKWFER

Figure 23: Flow of the algorithm
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