Teaching Task Flow Through
Dialog and Observation

Kevin Yoon Paul E. Rybski

CMU-RI-TR-07-18

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

May 2007

Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

(© Carnegie Mellon University

Abstract

In order for robots to act as valuable assistants for non-expert users, they need to be
able to learn new abilities and do so through natural methods of communication. Fur-
thermore, it is often desirable that tasks be learned quickly without having to provide
multiple demonstrations. Training should also be conducted so that the user has a clear
understanding of the manner in which environmental features affect the behavior of the
learned activity, so that execution behavior is predictable.

We present an interactive framework for teaching a robot the flow of an activity
composed of elements from a set of primitive behaviors and previously trained activ-
ities. Conditional branching and looping, order-independent activity execution, and
contingency (or interrupt) actions can all be captured by our activity structures. Addi-
tional convenience functionality to aid in the training process is also provided.

By providing a natural method of communicating production rules analogous to
rigid programming structures, tasks can be trained quickly and easily. We demonstrate
our task training procedure on our CMAssist mobile robot.

Contents

1 Introduction

2 Related Work

3 System Overview

4 Activity Structures
4.1 Behaviors
42 Taskso
43 Todolists o e e e
4.4 Combining Tasks and Todolists

5 Training
5.1 Training Tasks
5.2 Training Todolists

6 System Implementation

7 Experimental Results
7.1 Patrolthelab
72 Givethelabtour

8 Summary and Future Work

A CMAssist Task Training Guide

A.1 CMAssist File Descriptions
A.2 Starting top-level behavioro

A2.1 Hardwaresetup

A2.2 Softwaresetup
A3 TaskTraining
A4 Todolist Training i
A.5 Notes for future development,

I

o)WY R .) (]

<2

11

12
13
13

18

1 Introduction

One of the most natural applications for robots is to employ them as assistants, and
as assistants they have uses in a wide variety of domains. They could provide both
assistant and nursing services that would enable the elderly to live more independently.
They could also act more as partners in mixed human-robot teams whether it be in
the military, construction, or search-and-rescue. However, if such robots are to gain
widespread and long term acceptance, they will need to be capable of not only learning
new tasks, but learning them from non-expert users.

We previously introduced a method for task training via dialog and demonstration
in [12]. Therein we described a collaborative natural language procedure for construct-
ing tasks from a set of primitive behaviors and/or previously-trained tasks, which in
turn could be used to build other tasks. This modular task architecture supports an ex-
panding repertoire of abilities. Different training modes enable different features, such
as the ability to attach locational context to a given command through teacher obser-
vation, reducing the explanatory responsibilities of the human trainer. Preconditions
on task actions serve as a failure-handling mechanism that appropriately directs task
flow should an action fail. The robot also engages the human in a verification dialog to
resolve ambiguities in task flow and, in so doing, brings about mutual understanding of
the task representation.

This understanding can be desirable, sometimes essential, in situations where the
time or opportunity to provide multiple demonstrations and/or make corrections through
practice trials is unavailable, and the chance of the robot exhibiting unexpected behav-
ior due to conditions unencountered during training is unacceptable. The training di-
alog described herein enables the human to quickly construct rigidly-formulated tasks
where the features that affect task flow must be explicitly conveyed and not inferred.
Additionally, because tasks are symbolically referenced with natural language labels,
they are transferable across heterogeneous robots that share the same or a similar prim-
itive behavior set.

In this paper, we present some enhancements and modifications to this task training
technique that include the ability to capture conditional looping so that repetitive, or
cyclic, tasks can be created. Interrupt events that should be checked for the duration of a
task can also be specified to trigger contingency actions. Additionally, a new construct
called a todolist has been added, which permits order-independent activity execution.
Moreover, tasks can now be trained “on the fly” — that is, while training another
task that uses it — to support a top-down design approach while still permitting the
bottom-up construction of tasks. Furthermore, locational context is no longer inferred
automatically as this is not always desirable in some situations. However, location-
specific actions can still be specified explicitly with a simple grounding utterance.

This paper is organized as follows. Section 2 describes related work. A high-level
system overview in terms of activity execution is provided in Section 3. A description
of activities, which include what we refer to as behaviors, tasks, and todolists, is pro-
vided in Section 4 followed by a description of how tasks and todolists are trained in
Section 5. Section 6 contains a brief overview of our CMAssist' robot and experiments

Thttp://www.cs.cmu.edu/~coral/cmassist/

are shown in Section 7. A summary and plans for future work are in Section 8.

2 Related Work

Robot task learning and programming-by-demonstration (PBD) has been explored by
several groups. In [1], [3], and [13], robots learn actuator trajectories or control policies
from user task demonstrations. In [2] and [14], a task is built by determining which
primitive actions, from a base set of capabilities, should be combined to conduct the
task demonstrated. Our work has the ability to discern, to a limited extent, which prim-
itive actions should be combined to execute a given task by way of inferring locational
context on actions. We note, however, that this is not the main focus of this work, nor
is the intent to derive low-level control strategies. It is instead a method for construct-
ing tasks by sequencing higher-level primitive actions, as well as previously learned
tasks, through natural language keyphrases that map to production rules for task flow
structures.

Our work is largely inspired by [9] and [8]. In [9], a mobile robot is joysticked
through multiple demonstrations of a task from which it generates a generalized task
representation in the form of a directed acyclic graph (DAG). The task is then pruned
down to a linear sequence through teacher feedback in the form of verbal cues over mul-
tiple practice trials. In [8], a stationary humanoid robot that understands some speech
maintains multiple hypotheses of the intended representation of the task which is re-
fined through a structured dialog with the user. Neither of these robots can speak and
instead communicate with the user through only gestures and facial expressions. Our
approach employs a similar turn-taking framework for instruction and task refinement,
but we endow the robot with the capability of speech which conveys more directly the
robot’s understanding of the task and guides the human more effectively in resolving
ambiguities. In this way, we reduce the need to refine a learned task through practice.

Similar dialog-driven interaction mechanisms have been developed, though primar-
ily in the area of plan recognition. A theoretical discourse structure introduced in [4] is
applied in [11] and [7] where characteristics of the collaborative setting are exploited to
reduce the amount of input required of the user for plan recognition. They introduce a
framework to make user interfaces more intelligent, but which relies upon prior knowl-
edge in the form of recipes, or action plans for achieving goals. This work differs from
ours in that the goal is to help the user carry out tasks according to perceived intent
whereas as we are striving to teach a robot entirely new tasks with no pre-conceived
notions of intent. Our approach could potentially be used instead to build the recipes
necessary for this plan recognition method to work.

An augmentation-based learning approach is described in [10]. The task struc-
ture, including conditional branching and looping, is inferred from user demonstration.
Manual edits can also be made to fix incorrect task structures and constrain the induc-
tion procedure on subsequent demonstrations. Again, this approach is explored in the
software application domain and there is no effort to conduct a collaborative discourse
with the user for natural interaction. Additionally, in our work, branching and loop-
ing structures are explicitly and quickly communicated by the user, rather than being
inferred over multiple demonstrations.

A multi-modal interface for programming tasks is described in [5] that additionally
allows the user to control task priority during execution. Instruction-Based Learning
[6] is similar to our work in that it uses a base set of behaviors that are associated with
natural language symbolic labels and a modular architecture for symbolic tasks.

None of these works, however, describe the ability to convey branching or looping
flow constructs within the task structure that are conditioned on explicitly-communicated
features. Nor do they address the issue of structuring tasks for activities that need not
necessarily be executed in the order in which they were communicated. This severely
limits robustness and the types of tasks that can be trained. Through speech one can
very compactly format instructions for execution based on detectable environmental
states. No intention beliefs are maintained that may result in unexpected behavior dur-
ing execution, but rather, by engaging the user in a true spoken dialog, we can quickly
train tasks with clearly defined execution flow that is transparent to the user.

3 System Overview

Figure 1 depicts a simple overview of the system architecture we employ in our CMAs-
sist robots. Within the top-level behavior is an Activity Selector that, upon parsing given
speech commands, places the appropriate activities in the Activity Repertoire onto the
Current Activity List.

Top-level Behavior

Activity Selector

speech ACt|V|ty
only Repertoire

status T v

sensors Current
" Activity
/‘\ List
’ Execution command
Loop Y
Sensors Actuators

Figure 1: CMAssist software architecture

An activity is the encompassing term for behaviors, tasks, and todolists which are
described in more detail in Section 4. The Activity Repertoire is the collective map that
associates natural language symbolic labels to known activities. For example, “Go to”
in the phrase “Go to the door” maps directly to the navigation behavior which would
be put onto the Current Activity List with the location parameter “door”. An activity
building behavior can also add new activities to the Activity Repertoire as will be shown
in Section 5.1.

Though the various activity types have differing internal structures, they are all

executed by the same function form where the inputs are the sensors and a command
object, and the outputs are an integer status flag and a new command object.

(status, command) = Activity(sensors, command)

The sensors object gives an activity module access to sensory data (including ut-
tered speech) while command is an object that can be modified by an activity to store
actuator commands, such as motor velocities or speech output. A single command
object is passed through each of the activities in the Current Activity List so that com-
mands requested by activities of lower priority are visible to higher priority activities.
Activities can take this information into account when actuator commands need to
be overridden. For example, when the obstacle avoidance behavior needs to decide
whether to veer left or right to circumvent an obstacle, it can check the command ob-
ject to see in which direction the navigation behavior was trying to drive the robot and
choose to go in a similar direction. The main execution loop then involves process-
ing all of the activities in the Current Activity List with the given sensory data. When
the last activity on the Current Activity List is completed, status is routed back to the
Activity Selector which determines if behaviors need to be removed from the Current
Activity List. The command object is processed to drive the actuators.

The Activity Selector is triggered on speech input and is responsible for inserting
commanded activities, removing conflicting ones, and removing completed or failed
activities.

4 Activity Structures

4.1 Behaviors

A behavior maps low-level sensory data to actuator trajectories in order to accomplish
some high-level goal(s). The robot is assumed to be preprogrammed with some basic
set of behaviors. For a mobile platform, these primitive skills might include obstacle
avoidance and high-level navigation capabilities.

4.2 Tasks

The basic building block of a task is the task item (Figure 2). A task item consists
of three main components: a (potentially empty) precondition list, a reference to an
activity and a list of its execution parameters, and a pointer list to subsequent task
items.

The precondition list contains the conditions that must be satisfied before the ac-
tivity can be executed. There are two types of preconditions: enabling and permanent.
Enabling preconditions are evaluated only once before the task item’s activity is exe-
cuted. Permanent preconditions are monitored continuously for as long as the activity
is being executed. Preconditions serve as a failure-handling mechanism that prevents
an activity from being executed when conditions necessary for success are not met. For
example, the task item containing a “Open the fridge” command would be reasonably
preconditioned on being in the kitchen.

Depending on the completion status of the activity, the associated link is followed
to the next task item to be executed. Typically, there is only a single link to the next
task item, but in the case of conditional task item nodes (i.e. if and while statements)
there are pointers associated with the true and false cases. Task execution terminates at
leaf nodes in the task graph that contain no pointers to subsequent task items.

Task Item

‘ Precondition List ‘

| Activity |

‘ Next Task Item Pointers ‘

Figure 2: Task item

A task then is a temporally ordered sequence of task items captured in a directed
graph structure. They can represent simple linear sequences such as in Figure 3(a).
Here, the robot executes Task items 1 through N in order. Tasks can also repre-
sent conditional branching as shown in Figure 3(b). Depending on the evaluation
of <condition>, either Task item 2a or Task item 2b will be evaluated followed by
whichever tasks follow it until the branches reconnect at Task item N. Cyclic tasks can
be represented by loops as shown in 3(c). For as long as <condition> is true, Task item
2 and the subsequent task items inside the loop are executed. This is made possible by
applying the while-condition as a permanent precondition on all task items inside the
loop.

For some tasks it may be necessary to execute contingency activities, such as when
some event occurs requiring special action and the current task be put on hold. Rather
than inserting if and while statements throughout the task, the user can optionally spec-
ify contingency event-action pairs that are checked for the duration of the task execu-
tion. Unlike the previous conditional constructs, a contingency table (Figure 3(d)) is
not represented within the directed graph itself but is an attribute of the task object.
The contingency table is an associative structure that maps an interrupt event k to an
action tuple (a, '), where a is the activity to execute when k is true and r is a boolean
value determining whether or not the original task should be resumed when either k is
no longer true or a has completed.

4.3 Todolists

Todolists (Figure 4) are a special type of activity that allows the user to specify a list of
items that are to be executed in no particular order. These todolist items, as with task
items, can refer to any activity: behaviors, tasks, and other todolists. There is nothing
unique about the structure of a todolist. It is simply a list of disconnected activities that,
unlike tasks, cannot capture conditional branching and looping. It is rather the manner

If <condition>

While <condition>

Task item 1 True False

False

‘ Task item 2a ‘ ‘ Task item 2b ‘

Task item 2

e

‘ Task item 2 H Task item M ‘

LR N
LR N

Task item N Task item N Task item N
(a) Linear (b) Conditional branching (c) Conditional looping
Event (Activity, Resume?)
[] []
L] L]
[] []

(d) Contingency (Interrupt) events

Figure 3: Task flow structures

in which a todolist is executed that distinguishes it from the other activities enabling it
to accomplish unordered tasks as people do on a daily basis.

Activity Attempts | Complete
A 0 False
B 0 False
C 0 False

maxNumTries = 2

Figure 4: Example todolist

We currently employ a round-robin execution scheme where we loop through the
list until each item has either successfully completed or failed max NumTries times,
where max NumT'ries is specified during training.

Clearly, some optimal scheduling strategy to minimize failed attempts could be ap-
plied here when taking into account information like estimated todolist item durations
and reasons for past failures. Item priority could be an additional constraint that such
a strategy might take into account. This is beyond the scope of this work where we
simply provide a construct in which order-independent execution of activities is made
possible.

4.4 Combining Tasks and Todolists

As previously mentioned, an activity can refer to a behavior, a previously-trained task,
or a todolist. Since, tasks and todolists are activity containers as well as being activities

themselves, one can be composed of the other. By combining these two structures, we
are able to represent very expressive tasks in a hierarchical fashion. See Figure 5 for
an example.

Task

y

Todolist Task

Behavior

Task

Figure 5: Example of a task that contains a todolist that is itself composed of more
tasks

S Training

The basic method behind the training approach we employ is to allow the user to convey
production rules through the primary mode of speech. Each recognized user utterance
is mapped to one of three things: (1) an activity in the activity repertoire that is to
be appended to the current activity structure?, (2) a flow control structure that affects
where and how subsequent activities are appended to the current activity structure, or
(3) a “special” command, such as a question that the user might ask during the training
procedure.

Throughout the training procedure, the robot responds with an affirmative “ok”
after every user utterance to indicate understanding. The robot will also ask the user
questions about parameters that were not defined when the user has finished training,
thus guiding the user through dialog towards a well-defined activity structure.

5.1 Training Tasks

Task training is itself a behavior that can be invoked in one of two modes: dialog-only
and dialog-and-observation. The former is invoked with the keyphrase “When I say 7™
and the latter with “Let me show you what to do when I say 7, where T is the name
of the task to be trained and is typically an imperative statement. In dialog-only mode,
all commands must be issued to the robot verbally. In dialog-and-observation mode,
the robot invokes its person-following behavior such that it is always in the vicinity
of the human trainer as he moves around the environment. In this manner, the robot
can interpret deictic utterances like “come here”. In the previous work [12], this mode
was used to automatically attach locational context to each command given by the user.
This was done by inserting a locational precondition into all task items corresponding

2 A task or todolist. Behaviors are not trained.

to the location in which the command was given and by prepending each task item with
navigational “goto” commands to ensure that the robot would go to location in which it
was meant to execute a particular task item. In an effort to provide a framework for the
training of more general tasks, where it is not necessarily appropriate to assume that
actions should be executed where they were demonstrated, locational preconditions are
no longer assumed but can be easily attached to subsequent commands with the “come
here” phrase.

Task flow control is communicated by keyphrases summarized in Table 1. An
example of a user utterance that creates a conditional branching structure (Figure 3(b))
is “If you see Kevin, say ‘Hi Kevin’. Otherwise, say ‘Where is Kevin?’ before looking
for Paul”. The resulting task would cause the robot to say either “Hi Kevin” or “Where
is Kevin” depending on whether Kevin was detected. It would then begin the activity
called looking for Paul.

Table 1: Task flow commands

Command

Description

“If <condition>"

Appends a conditional node to the task graph. Subse-
quent commands are added to True branch.

“Otherwise” Causes subsequent commands to be added to the False
branch of the current if node.
“before” Connects True and False branches of current if node with

the following command. (Ends if block.)

“While <condition>"

Appends a conditional node to the task graph. Subse-
quent commands are added to True branch and precondi-
tioned on <condition>.

“After that” Routes execution flow to the current while node and ap-
pends subsequent commands to the False branch. (Ends
while loop.)

“Meanwhile if | Adds a contingency event to the task object and maps it to

<condition>" the next activity command. If <condition> becomes true
at any point during task execution, the specified activity
is exectued.

“Exit Task” Appends a node that exits task with success flag.

“The task has failed” Appends a node that exits task with fail flag.

“Come here” Appends a gofo node where the parameter is the location

at which the user said “Come here”. Subsequent tasks
are preconditioned on being at this location until the user
moves to another location in the robot’s map.

Cyclic constructs (Figure 3(c)) can be specified with a phrase like “While Kevin is
around, do a dance. After that charge batteries”. Executing the resulting task would
make the robot conduct the do a dance activity for as long as it sees Kevin. If Kevin
leaves, the loop exits and the robot begins the charge batteries activity.

Contingency event-action pairs are specified with the “meanwhile” keyphrase. If
we appended “Meanwhile if you see Paul, sing a song” to the previous example, the

robot would begin the sing a song task if Paul was detected at any time during the task
(i.e. while dancing or charging batteries) and would continue to do so until the sing
a song task completed or Paul became no longer visible. During training, the robot
also asks the user if it should resume the original task after executing the contingency
action.

Special utterances can be used to indicate that the task should exit. “Exit task”
and “The task has failed” create task items that when reached during execution will
terminate the task, the first with a success flag and the latter with a failure flag. (The
task exits with a success flag by default even when “Exit task” is not said.) This is
particularly useful when tasks are used in a todolist where the return status indicates
whether a todolist item should be reattempted or not.

As can be seen, this approach to task training places more of the design burden on
the user than some of the PBD techniques mentioned in Section 2, but it comes with
the added benefit of increased mutual task understanding between the user and robot
and consequently more predictable execution behavior. Also, tasks cannot be overfit-
ted to training set conditions because task flow depends on features that are specified
explicitly. Moreover, the natural interaction framework provides for quick and easy
construction of these tasks.

Figure 6 shows a simple schematic for this Task-building behavior where we can
see the speech input being processed by the Speech Parser. Therein, we first check
if the utterance is a special helper command, such as those shown in Table 2. If it
is not, then we check if it is a flow control command such as those shown in Table
1 and add nodes or update pointers to the task under construction as appropriate. If
it is not that, then we check if it corresponds to an activity that already exists in the
Activity Repertoire. If so, then we add a task item containing the activity to the task
under construction. Finally, if the user has ended the task training sequence, the robot
engages the human in a verification dialog to confirm the task description by reading it
back to the human and to acquire any additional information that might be necessary,
such as what to do when an if condition does not hold and the otherwise case was not
specified, before saving the task to the Activity Repertoire. The command object that
is passed out of the Speech Parser contains speech output commands as well as the
motor commands set by the Follow behavior.

The constructs in Figure 3 can be combined and nested to create activities that can
richly capture task flow. It can also be seen that activities can become arbitrarily com-
plex. While our task training approach is well-suited for composing complex tasks
from simpler subtask, the robot can provide descriptive feedback and verify with the
user the flow of the trained task to minimize errors during a long and potentially con-
fusing training sequence. In Table 2 are some phrases that can be understood by the
robot to aid the user during the training process.

Note that, in training mode, if the user says a phrase that is unrecognized, the robot
will give the user the option of training a new task under the assumption that he may
have been referring to a task that has not yet been created. In this way, the user can
follow a top-down approach and train tasks “on the fly” as their need becomes apparent
without having to plan all the required lower level subtasks ahead of time.

The user can say “Thank you” to simply end the training process and the learned
task is saved to the Activity Repertoire as is. Or, by asking “Is that understood?”, the

Sensors

speech | Special | command

Activity
Repertoire

TaskBuilder Behavior

> Follow
Behavior

Speech parser

command?

'

Flow control Task
command? >

'

Known -

> activity?

'

- Verify and
save

A
y

status y command

Figure 6: Task builder

Table 2: Training helper functions

Command Robot Function Description
(T = Training mode, E = Execution mode)
“Describe T T,E: Describes the task/todolist T'

“What did you say?”
“Can you repeat that?”

T,E: Repeats the last thing it said

“Where was 177

T: Repeats the last two task items appended to the
current task/todolist

Unrecognized/Misheard
utterance

T: Asks if the user was referring to the name of a new
task/todolist to train, and starts a new training process
if this is so.

E: Robot says that it did not understand and asks the
user to repeat himself.

robot will dictate the task description and await confirmation from the user. If the task
is correct, the robot then attempts to clarify ambiguities. Currently this involves asking

the user for instructions for unspecified “otherwise” cases.

5.2 Training Todolists

The todolist training behavior is invoked with the keyphrase “Let’s make a todolist
called L”, where L is the name of the todolist to be trained. The user then simply
lists the activities that are to be added. When finished, the user says “Thank you” to
end training or asks “Is that understood?” to have the robot repeat the todolist items

10

Figure 7: The CMAssist robot interacts with a user.

dictated. If the user confirms that the todolist is correct, the robot then asks the user for
the number of times it should attempt to repeat failed tasks.

Unlike tasks, todolists are learned exclusively through dictation only, since todolist
items themselves are typically high-level actions that can be trained as tasks.

6 System Implementation

The task training procedure was evaluated on our CMAssist robot, pictured in Figure
7, that was expressly developed as our research platform for human-robot interaction.
An earlier version of this task training work was demonstrated at the Robocup@Home
competition in June 2006 where our team placed 2nd out of 11 teams.

The robot has modular hardware and software architectures to enable rapid proto-
typing and integration of new sensory, actuator, and computational components. An
omnidirectional camera and stereo camera allow it to sense the presence of people
wearing color-coded shirts, while the stereo camera and laser range finder together are
used for navigation and obstacle avoidance. The robot can also recognize a subset
of natural English language speech and speak through a Text-To-Speech (TTS) engine.
These capabilities equip the robot with sufficient spatial and environmental information
to execute our interactive training algorithm.

A list of relevant behaviors used by our robot is as follows:

¢ Goto(x,y)/Goto(name) Drives the robot to a location specified either by global
coordinates or a location label.

11

o Say(s)/Ask(s,p) Generates speech output from the TTS engine. Say(s) causes
the robot to speak an utterance s. Ask(s,p) requires that the robot identify and
speak the utterance to a particular person p if present and wait for a response.

e Follow(p) Causes the robot to follow person p while maintaining a fixed distance
of approximately 1m.

o StateChecker(a) Unique in that the useful output is the status flag rather than
the command object, which is not modified at all. Uses sensors to calculate a
status flag indicating whether or not an assertion a is true or false. Used by task
items containing conditional statements such as if and while nodes.

e TaskTrain(f) Invokes the task training procedure. The Follow behavior is si-
multaneously executed if f is true causing the robot to follow the teacher and
learn the task based on both the spoken utterances as well as the locations of the
teacher.

e TodolistTrain() Invokes the todolist training procedure.

In order for the locations in the environment to be semantically meaningful as part
of the training process, a map of the environment is provided to the robot which con-
tains location labels. For instance, the locations of named objects such as couch, table,
and television can be added to the map as well as general locations of rooms such
as lab or living room. This a priori information is used to ground locations that are
either mentioned in the human’s speech or are visited as the human walks about the
environment.

7 Experimental Results

The robot was trained to conduct a series of tasks that highlight the expanded capability
of this task training framework. We focus on capabilities not already described in [12].
The first task is a security activity called Patrol the lab. This example illustrates both
conditional branching and looping, makes use of an interrupt event, and demonstrates
the training of tasks “on the fly”.

The transcripts for the training procedure are shown below. First, a task called
Sound the alert (Figure 8) is trained, which is then used as the contingency action
triggered when someone is detected by the robot in the Patrol the lab task (Figure 9).

For brevity, the “ok” feedback from the robot after every user utterance is omitted.
Quoted phrases are those uttered by the user while phrases in <> are those uttered by
the robot. Unquoted phrases describe what is physically happening in the scene. The
numbers on the left in the transcripts are simply timestamps that denote where actions
were executed on the robot’s path depicted in the corresponding scenario visualiza-
tions. Figure 10 shows the visualization for the training of Patrol the lab in a top-down
representation of our lab.

12

7.1 Patrol the lab

The training process for the Patrol the lab task is initiated in dialog-and-observation
mode. Kevin says “Drive around the lab” which was not understood by the robot, so
it begins a new training process. Kevin then proceeds to teach it how to drive around
the lab by leading it to different locations and saying “come here” which the robot
automatically converts into a Goto X command where X is the symbolic label for the
current location of the human as determined from a given map. Kevin then asks “Is
that understood?” to begin a verification process after which he resumes training the
original Patrol the lab task. Having forgotten his place in the task he asks “Where was
17" and the robot reports the last two tasks items that were added. Finally, Kevin adds
a contingency action, Sound the alert, in the event that the robot sees someone.

“When I say sound the alert”

“If you see Kevin”

“say hi Kevin”

“Otherwise”

“say intruder alert”

“Thank you”

< Task training is complete. Thank you.>

Figure 8: Training transcript for the Sound the alert task

By saying “Patrol the lab”, the task is invoked. Figure 11 shows the transcript of
what happened and the scene is depicted in Figure 12. The robot first enters the while
loop after determining that Kevin is not there — the robot cannot see people when an
obstacle obstructs its view — and travels from the door, to the QRIOs, to the AIBOs,
and back to the door again (Figure 12(a)). As the robot travels from the QRIOs to
the AIBOs, Kevin walks in triggering the interrupt condition “meanwhile if you see
someone”. The robot stops and executes Sound the alert causing the robot to say <Hi
Kevin> (Figure 12(b)). Kevin then leaves and the robot continues with the patrol task
and travels to the AIBOs. As it travels towards the door, Paul steps into view triggering
the interrupt event once more. Paul is considered to be an intruder (by virtue of not
being Kevin) and the robot says <Intruder alert> (Figure 12(c)). Paul then leaves and
the robot again continues with the patrol task (Figure 12(d)).

7.2 Give the lab tour

The second task is Give the lab tour where the robot acts as a tour guide by taking
the visitors to each exhibit and then asking an expert to present it in more detail. The
task involves greeting visitors at the door, executing its subtasks Give the QRIO tour
and Give the AIBO tour, and then saying goodbye at the center of the lab. The task is
similar to the one described in [12] but includes two main differences: (1) the phrase
“The task has failed” is used in the subtasks and (2) the subtasks are contained in a
todolist. This enables the robot to recognize when a task on the todolist has failed and
to reattempt it at a later time. The training transcript of the task Give the QRIO tour is

13

41

63

81

“Let me show you what to do when

I say patrol the lab”

<Ok, let’s begin>

“While Kevin is not here”

“Drive around the lab”

<I don’t understand. Did you want to

teach me Drive around the lab?>

“Yes”

<Ok, please begin teaching me Drive around the lab>
Kevin walks to the door

“Come here”

Kevin walks to the QRIOs

“Come here”

Kevin walks to the AIBOs

“Come here”

“Is that understood?”

<Yes. You said go to the door. Go to the QRIOs.
Go to the AIBOs. Is this correct?>

“Yes”

<Thank you. Let’s continue training patrol the lab>
“Where was 1?7

< You previously said while Kevin is not here,
drive around the lab. What shall I do next?>
“Meanwhile if you see someone”

“sound the alert”

<Ok. When I’m finished with that shall

I resume patrol the lab?>

“Yes”

Figure 9: Training transcript for the Patrol the lab task

> Robot C T 7T
@ Kevin ® g1 amBos

it

Figure 10: Patrol the lab task training. The colored blocks represent furniture and the
labels Door, QRIOs, and AIBOs denote pre-specified map regions.

14

Goto door
13 Goto QRIOs
35 Goto AIBOs
52 Goto door
79 Goto QRIOs
103 Goto AIBOs

<Hi kevin>
Kevin leaves
122 Goto door

Paul leaves
152 Goto QRIOs
Continue drive

0 “Patrol the lab”

114 Kevin walks in.

136 Paul walks in. Robot stops.
<Intruder alert>

Robot stops.

around the lab task

Figure 11: Execution transcript for the Patrol the lab task

= Robot
@ Kevin
@ Paul

X

1 -

(a) Execution: Drive around lab

(b) Execution: Interrupt (Kevin)

* Robot
@® Kevin
@® Paul

L]

) =

(c) Execution: Interrupt (Intruder)

= Robot
@ Kevin
@ Paul

L]

1
°

1 -

(d) Execution: Drive around lab (cont’d)

Figure 12: Patrol the lab task

15

shown in Figure 13. The task Give the AIBO tour is trained similarly except that it asks
Paul, instead of Kevin, to talk about the AIBOs. The training transcript for the todolist
Talk about the robots and the top-level task Give the lab tour are shown in Figures 14
and 15, respectively. The visualization of Give the lab tour is shown in Figure 16.

“Let me show you what to do when
I say give the QRIO tour”

<Ok, let’s begin>

Kevin goes to the QRIOs

“Come here”

“Say these are the QRIOs”

“If Kevin is there”

“ask Kevin to talk about the QRIOs”
“Otherwise”

“say unfortunately Kevin is not around to
talk about the QRIOs”

“The task has failed”

“before”

“say that concludes the QRIOs tour”

Figure 13: Training transcript for the Give the QRIO tour task

“Let’s make a todolist called talk about the robots”
<Ok, let’s begin>

“Give the QRIO tour”

“Give the AIBO tour”

“Is that understood?”

<Yes, you said give the QRIO tour.

Give the AIBO tour. Is this correct?>

“Yes”

<How many times shall I attempt each

item before giving up?>

“Two”

<Ok. Todolist training is complete. Thank you.>

Figure 14: Training transcript for the Talk about the robots task

The execution of the Give the lab tour task is transcribed in Figure 17 and visualized
in Figure 18. After greeting the visitors at the door, the robot begins the Talk about the
robots todolist and goes first to the QRIOs where it finds that Kevin is not there and
consequently the Give the QRIO tour task fails (Figure 18(a)). It then travels to the
AIBOs where it sees Paul and requests that he speak about them (Figure 18(b)). When
done, Paul tells the robot he is finished and the robot decides to retry the failed items in
the todolist, i.e. Give the QRIO tour. This time Kevin is there and the task is completed
successfully (Figure 18(c)). The tour is completed when the robot goes to the lab center
and thanks the visitors for coming (Figure 18(d)).

16

0 “Let me show you what to do when i
say give the lab tour”
<Ok, let’s begin>

16 Kevin goes to the door
“Come here”

38 “Say welcome to the multi-robot lab”
“Talk about the robots”

50 Kevin goes to the lab center
“Come here”
“Say thank you for visiting”

Figure 15: Training transcript for the Give the lab tour task

> Robot I I
@ Kevin
| AIBOs
L] .
50
0 38 QRIOs

-

Figure 16: Give the lab tour task training

0 “Give the lab tour”
Goto the door
<Welcome to the multi-robot lab>
11 Goto the QRIOs
<These are the QRIOs. Unfortunately,
Kevin is not around to talk about them.>
33 Goto the AIBOs
49 <These are the AIBOs. Paul, could you please
talk about the AIBOs?>
Paul talks about the AIBOs and then tells the
robot that he is finished.
Goto the QRIOs
78 <These are the QRIOs. Kevin, could
you please talk about the QRIOs?>
Kevin talks about the QRIOs and then
tells the robot that he is finished.
Goto the lab center
106 <Thank you for visiting>

Figure 17: Execution transcript for the Give the lab tour task

17

> Robot LI 11 [& Robot
@® Kevin ® @® Kevin
@ Paul AIBOs @ Paul
L] L]

o

0 = 1 -

(a) Give QRIO tour failed. (No Kevin) (b) Giving AIBO tour
"y I

Robot T * Robot
@® Kevin o a9 @® Kevin
@® Paul AIBOs ® Paul :‘

[]

(c) Giving QRIO tour. (Kevin is there now) (d) “Thank you for visiting”

Figure 18: Give the lab tour task execution

8 Summary and Future Work

We have presented an enhanced task training procedure that permits the user to easily
communicate a rich set of task flow structures.. Through dialog and observation of the
user as he moves around, this framework allows for natural methods of conveying rigid
production rules to construct these flow structures when training a task.

The next steps in this work include field deployment and evaluation of the system
under the use of non-technical users. In addition to identifying new types of flow
structures and convenience functionality we also hope to identify alternative keyphrases
that users might use to map to the different flow structure production rules and add these
to our grammar of recognized phrases.

The inference of preconditions beyond the locational ones which we are currently
capable of generating also poses an interesting challenge as we explore different kinds
of tasks and domains.

It would also be advantageous to parameterize tasks so that relevant features can be
specified at execution time. That is, instead of training the tasks Give the AIBO tour
and Give the QRIO tour separately, a “template” task called Give the R tour could be
trained, where R is the feature parameter that is propogated through the task definition
and is specified when the task is executed to yield the two tour tasks. This could not
only decrease training times, but require fewer resources as well due to code sharing.

18

A CMAssist Task Training Guide

The following outlines the procedure for operating the CMAssist robot in task training
mode as of the date this document was written. Relevant notes for further development
of the task training system are also included.

A.1 CMaAssist File Descriptions

The table below briefly describes those files in the CMAssist software that are relevant
to task training. File paths are specified with respect to the software root directory
specified by the environment variable ER1ROOT'.

A.2 Starting top-level behavior
The following procedure outlines how to start up the CMAssist robot with the top-level
demo.py behavior. This is not specific to task-training, but is required in order to learn
tasks and execute learned tasks. These instructions do not include the activation of all
sensors and actuators, but only those that are relevant to task-training. Table 4 shows
the designations for the computers used by CMAssist.
A.2.1 Hardware setup

1. Connect motor controller to serial port on PC-LINUX-BOTTOM.

2. Connect stereo camera firewire cables and power cord to PC-LINUX-BOTTOM.

3. Connect CAMEQO firewire cable and power cord to PC-LINUX-TOP.

4. Connect speaker to PC-LINUX-TOP.

5. Connect Shure wireless microphone or VoiceTracker Array Microphone to PC-
WINDOWS.

A.2.2 Software setup

Typically, the following is done remotely where the operator connects to these ma-
chines from a single terminal on PC-TELEOP. Exceptions are those modules that out-
put high-bandwidth data like the stereo server. These applications should not be exe-
cuted through a remote shell.

On PC-WINDOWS:
1. Start Nautilus voice server. (This is not a part of the erl/ codebase.)
On PC-LINUX-BOTTOM:

1. Start motor server (robot/erlserver.py)

19

Table 3: Task Training Files

File

Description

behaviors/ demo.py

Main (top-level) behavior.

behaviors/ *.wp

Files specifying labels of points in the environment
map as well as pre-defined collision-free connections
between them. Read in by demo.py.

behaviors/
waypoint2.py

Navigation behavior. Performs simple Djikstra path-
planning between known waypoints (in .wp file). Also
contains function defining regions, allowing the robot
to ground actions at particular locations. Currently,
a region is a circle specified by some radius about a
known waypoint.

behaviors/
task_train.py

Task-training behavior. Can be initiated with follow
behavior on or off.

behaviors/ tasklist.py

Task and task builder classes. (The term ’list’ refers
to the first version of the task structure which was a
simple list. This is no longer an accurate descriptive.)

behaviors/ todolist.py

Todolist and Todolist builder classes.

behaviors/ Consolidating container class for behaviors, tasks, and
activity_repertoire.py | todolists.
behaviors/ Recognizes all main phrases that can be understood

cmd_parser.py

by the CMAssist robots and returns an appropriate
command list object typically structured like [com-
mand, paraml, param2,...]. In demo.py, the ’com-
mand’ string is checked against the Activity Reper-
toire. If such an activity exists, it is executed with the
corresponding parameters.

behaviors/
state_checker.py

Uses the featureset to process True/False queries.

user_scripts/
color_channel_map.csv

File that maps CAMEO color channels to person
names. Used by the state_checker.

user_scripts/
robotl Ps.py

Contains IPs and ports of all featureset components.
Make sure these are correct otherwise behaviors may
not be able to access sensor data or control actuators!

user_scripts/
saved_activities.txt

Contains saved activities. This is loaded by demo.py
on startup into the Activity Repertoire and overwritten
on shutdown with the contents of the Activity Reper-
toire.

20

Table 4: Computer Designation
Computer Designation | Description
(Hostname)
PC-LINUX-BOTTOM Linux laptop onboard the robot.
(On Carmela: melonhead
On Erwin: orca)
PC-LINUX-TOP Linux laptop onboard the robot. Executes more
(On Carmela: bowhead | processor-intensive modules.
On Erwin: trilobite)

PC-WINDOWS Windows laptop, soon to be onboard the robot. Exe-
(narwhal) cutes speech recognition only.

PC-TELEOP Linux/Windows machine from which teleoperator
(e.g. pufferfish) connects to the above machines to execute modules.

2. Start stereo camera server (stereo/bin/stereo_server)
On PC-LINUX-TOP:
1. Start CAMEQO server (vision/yuv_multicolor_server)

2. Start Cepstral speech (cepsral/cepstral_server.py). (Cepstral TTS software
must be installed already.)

3. Check that server IPs and ports are correct in user_scripts/robotI Ps.py.

4. Start top-level behavior (behaviors/demo.py). Be sure to execute it with the
correct number of color channels enabled. (e.g. For two colors, python2.4
./demo.py -c 2)

5. Connect to featureset with text client. Default port is 50020. (e.g. python2.4
.Jtep-asynce_client demo2.py -n <PC-LINUX-TOP hostname> -p 50020). If
there is a handle_expt() error, it means that the port is not open or the specified
hostname is not recognized and may need to be added to featureset/sensors/erl/text_erl.py.

All commands can now be entered through the text console or verbally through the mi-
crophone. There are some commands that can only be recognized through the text con-
sole because they were not yet added to the speech grammar or there was never a need>.
In order to have a command recognized through speech, it must be added to the Nau-
tilus grammar file, located in M M I /recosock /grammar /cmassist_utterances. fsg
(not in erl/ codebase). The corresponding .bnf ASCII file shows what phrases are cur-
rently recognized. Currently, new utterances can only be compiled by CMAssist’s
parnter at Naval Research Labs.

3Expanding the grammar tends to lead to less accurate speech recognition, so only those commands
that are essential should be added. Commands useful only for development are generally not added to the
grammar.

21

A.3 Task Training

The following summarizes how to train the robot for a task. Training can be initiated
in two modes:

Dialog-only Robot does not move and listens only to dictated commands. To initiate
training in this mode, say “When I say <task name>".

Dialog-and-Observation Robot starts up its following behavior so that commands
like “Come here” can be ground to different map locations. To initiate training
in this mode, say “Let me show you what to do when I say <task name>".

Training can also be ended in one of two ways:

Force save Robot saves the learned task structure as is and exits training mode. To
end training in this way, say “Thank you”.

With verification Robot begins a verification dialog wherein it checks for unspecified
otherwise statements. To end training in this way, ask “Is that understood?”

The training of the task itself involves using a combination of task flow (Table 1)
and convenience (Table 2) commands outlined in this paper. People are currently recog-
nized as color blobs on CAMEO color channels. To add a new person, add a new color
channel to the look-up table (.lut) file passed in to vision/yuv_multicolor_server.
Whichever channel number is associated with that color should be mapped to the per-
son’s name in user_scripts/color_channel_-map.csv. New regions can be specified
in a waypoint (.wp) file, like behaviors/testgraph.wp. For alist of all commands that
are understandable by the robot, see behaviors/cmd_parser.py.

A.4 Todolist Training

The training of todolist is very similar to that of tasks. The only thing that is different
is that no task flow commands can be used — todolists ae simple list structures —
and there is no verification dialog. Training can be initiated by saying “Let’s make a
todolist called <Todolist name>"".

A.5 Notes for future development

e Not all of the commands recognized by behaviors/cmd_parser.py are recog-
nized during training. This is because when training mode is active, only com-
mands relevant to training are recognized. It may be desireable in some cases to
pass those commands recognized by cmd_parser.py, but not relevant to training,
back to top-level demo.py behavior instead of just discarding them. See how the
featureset text/voice sensor peek() function is used to achieve something similar
in snackbot_teleop.py.

e Regions are currently defined as circles defined by a 1.5m radius about waypoints
specified in behaviors/testgraph.wp. The ability to specify more general re-
gion shapes should be integrated. This may require new region functions to be

22

defined in behaviors/waypoint2.py and/or a GUI through which regions can
be specified.

Problems may arise if any of the following occur.

1. Activity A contains Activity B and B contains A.

2. Activity A contains Activity C and Activity B contains Activity C, and
Activities A and B are executed simultaneously.

Though it is conceivable that case 1 may be a desirable task structure, recursion
checking should be implemented to alert the user to such cases. To allow for
both cases 1 and 2, however, the creation of multiple instances of activities may
need to be implemented. Currently, only a single instance of a given behavior,
task, or todolist is ever stored in, and executed from, the Activity Repertoire even
though a single activity can be used by multiple other activities. When activities
that use the same sub-activity are executed simultaneously, erroneous execution
can follow unless a separate instance is created for the shared sub-activity. The
current strategy to avoid case 2 is to never allow non-preprogrammed activities
to be executed simultaneously. This is a restrictive limitation which should be
corrected.

Tasks and Todolists should be made in such a way that a todolist can be trained
on-the-fly while training a task and vice versa. Currently, only tasks can be
trained on-the-fly while training tasks and todolists while training todolists.

Conduct user study with non-programmers to gauge ease of using this training
system. Identify common vocabularly usage, expectations, areas of frequent user
confusion, etc.

23

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

C. Atkeson and S. Schaal. Robot learning from demonstration. In Proc. 14th International
Conference on Machine Learning, pages 12-20. Morgan Kaufmann, 1997.

D. Bentivegna, C. Atkeson, and G. Cheng. Learning from observation and practice at the
action generation level. In IEEE International Conference on Humanoid Robots, Karlsruhe
and Munich, Germany, September/October 2003.

S. Calinon and A. Billard. Incremental learning of gestures by imitation in a humanoid
robot. In Proceedings of the 2007 ACM/IEEE International Conference on Human-Robot
Interaction, Washington, D.C., March 2007.

B. Grosz and C. Sidner. Attention, intentions, and the structure of discourse. In Computa-
tional Linguistics, Vol. 12, No. 3, September 1986.

S. Iba, C. J.J. Paredis, and P. K. Khosla. Interactive multi-modal robot programming. In
Proceedings of IEEE International Conference on Robotics and Automation, Washington
D.C., May 2002.

S. Lauria, G. Bugmann, T. Kyriacou, and E. Klein. Mobile robot programming using
natural language. Robotics and Autonomous Systems, 38(3—4):171-181, 2002.

N. Lesh, C. Rich, and C. Sidner. Using plan recognition in human-computer collaboration.
In Proceedings of the Seventh International Conference on User Modelling, Banff, Canada,
June 1999.

A. Lockerd and C. Brezeal. Tutelage and socially guided robot learning. In Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan,
September 2004.

M. Nicolescu and M. Matari¢. Natural methods for robot task learning: Instructive demon-
stration, generalization and practice. In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multi-Agent Systems, Melbourne, Australia, July
2003.

D. Oblinger, V. Castelli, , and L. Bergman. Augmentation-based learning: combining
observations and user edits for programming by demonstration. In Proceedings of the
International Conference on Intelligent User Interfaces, pages 202-209, Sydney, Australia,
January-February 2006.

C. Rich, C. Sidner, and N. Lesh. Collagen: Applying collaborative discourse theory to
human-computer interaction. In Al Magazine, Special Issue on Intelligent User Interfaces,
November 2001.

P. E. Rybski, K. Yoon, J. Stolarz, and M. Veloso. Interactive robot task training through
dialog and demonstration. In Proceedings of the 2007 ACM/IEEE International Conference
on Human-Robot Interaction, Washington D.C., March 2007.

J. Saunders, C. L. Nehaniv, and K. Dautenhahn. Teaching robots by moulding behavior and
scaffolding the environment. In Human-Robot Interaction, Salt Lake City, Utah, March
2006.

R. M. Voyles, J. D. Morrow, and P. K. Khosla. Towards gesture-based programming: Shape
from motion primoridal learning of sensorimotor primitives. Robotics and Autonomous
Systems, 22:361-375, November 1997.

24

