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Abstract

This paper presents a vision-based framework for intelligehicles to detect and
track people riding bicycles in urban traffic environments.deal with dramatic ap-
pearance changes of a bicycle according to different viewpas well as nonrigid
nature of human appearance, a method is proposed which gsrg@mplementary de-
tection and tracking algorithms. In the detection phasepse& multiple view-based
detectors: frontal, rear, and right/left side view. Forteaiew detector, a linear Sup-
port Vector Machine (SVM) is used for object classificatiarcombination with His-
tograms of Oriented Gradients (HOG) which is one of the misstrominative features.
Furthermore, a real-time enhancement for the detectioogsois implemented using
the Integral Histogram method and a coarse-to-fine casqgueach. Tracking phase
is performed by a multiple patch-based Lucas-Kanade tradkee first run the Har-
ris corner detector over the bounding box which is the resfuitur detector. Each of
the corner points can be a good feature to track and, in coeseg, becomes a tem-
plate of each instance of multiple Lucas-Kanade trackersndnage the set of patches
efficiently, a novel method based on spectral clusteringrélym is proposed. Quan-

titative experiments have been conducted to show the aféaeiss of each component
of the proposed framework.
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1 INTRODUCTION

Research on safety design of vehicles has focused on prajecivers and passengers
from accidents. Many concepts and devices have been dedtlépm new types of
safety airbag and electronic equipment to intelligentidgvassistance systems [12].
In the last few years, however, the trend of research has &eemded to protect-
ing vulnerable road users (VRUS) such as pedestrians, IEtsjdwo wheelers, and
other small vehicles [8]. This can be regarded as a natwatltto enrich total driv-
ing safety. Among these VRU’s, as shown in Figure 1, pedestrand bicyclists are
the weakest traffic participants because there is no sgaaitdction device or mecha-
nism against the consequences of accidents (save for Isalvoet by bicyclists). For
this reason, accurate and real-time pedestrian and tyldiection techniques have
emerged as a hot research topic in the field of computer vesnahintelligent Trans-
portation Systems (ITSs), and a great variety of approdches been proposed in the
research community (see Section 2 for more detail). To this different approaches
use different sensors such as an ultrasonic sensor, théemsepsor, laser scanner, mi-
crowave radar and cameras, and sometimes their fusion isi#dgto result in more
robust detection [8]. Since every sensor technology hamitsadvantages and limita-
tions, sensor fusion in certain levels has recently beesidered as a promising and
desirable approach [13].

Figure 1: Examples of Vulnerable Road Users. Among these '¥/Rl¢destrians and
bicyclists are the weakest traffic participants becauseetieeno special protection
device or mechanism against the consequences of accidents.

For our work, we are considering the use of video cameraseaprtmary sensor
system for detecting and tracking bicyclists. Cameras #iractive in that they not
only capture high-resolution views of scenes that inclualé lsolor and texture infor-
mation, but also in general are inexpensive as comparec#r eensor technologies
such as LIDAR or RADAR. However, despite their attractivpexds, vision-based bi-



cyclist and pedestrian detection is still a challengindyem due to the fact that people
can appear quite different from each other due to differeircelothing/hairstyle, body
pose, as well as motion. Real-world outdoor environmergsamplex and fluid and
include cluttered backgrounds, changing illuminatiord eariable weather conditions
which can further complicate the detection and trackingofmm. Furthermore, be-
cause this application is for supporting autonomous vehjdhe sensors are mounted
on moving platforms which once again increases the complebo tackle these diffi-
culties, many interesting and promising vision technicheege been proposed from the
computer vision and ITS communities. Some of this work iglueseeady in practical
real-time pedestrian detection systems [10], [1]. Howgiherse systems mainly focus
on pedestrians, not bicyclists; indeed there is a compariatk of research about bicy-
clist detection and tracking. While these two problems slmany common features,
the bicyclist detection problem shows more challengingeats including dramatic
appearance changes of a bicycle according to its viewpaintsfast motion compared
to a pedestrian. Therefore, our proposed bicyclist detectiethod is based on a ro-
bust shape feature extraction algorithm and is coupled tongpatationally efficient
tracking algorithm. The contributions of this work are suarined into the following
two aspects:

Fast bicyclist detector: to deal with dramatic appearance changes of a bicycle ac-
cording to viewpoints and, at the same time satisfy reakonstraints our application
domain needs, we use four view-based detectors: frontal ared right/left side view.
For each detector, we implement a Histogram Oriented Gnggl{#1OG) based detec-
tor [4] and apply it as a building block to our bicyclist deieo/tracking framework.
One problem of the HOG based detector is its slow performamigieh exists for two
reasons. First, the HOG descriptor basically uses a dersglieg scheme of the im-
age region (or template). Second, it has to search for stiageobjects in multi-level
scale images. To solve this problem, we follow the approaopgsed byZhu and
Avidan[25], applying two methods to speed up the HOG based detetherfirst one
is to use the concept of “Integral Histogram” [17] to speedthup feature extraction
process. The other method is to use a boosting algorithno[3peed up the classifi-
cation process. We use AdaBoost to select the best featudesoastruct a cascade of
classifiers.

Multiple patch-based Lucas-Kanade tracker: in order to efficiently deal with
articulate bicyclist shape and obtain the trajectory ofyblies, we apply a multiple
patch-based Lucas-Kanade tracker to our framework. [gosid features to track are
detected by running the Harris corner detector over the tiogrbox returned by our
detector. Each of the corner-like points becomes a tempfaach instance of multiple
Lucas-Kanade trackers. Since we cannot guarantee thdteaihtltiple patches are
necessarily found on the bicyclist, we need a high levellpateanagement scheme
not only to find outliers (patches from the background) bsb &b evolve the topology
between multiple patches in an on-line fashion. Here, wp@se a new method based
on spectral clustering algorithm to control geometric ¢ists of multiple patches.

The structure of this paper is as follows. We begin with $#cf by reviewing
the previous work on the pedestrian detection and trackioglem. This is due to the
fact that there is a lack of research on bicycle detectionteatking and we believe
our problem is most related to the problem of pedestrian&elction 3 we formulate



the detection problem in a static image and give the detéitgipview-based detec-
tors. We then discuss the tracking problem in Section 4. Kpermental results and
comparisons are presented in Section 5. We conclude inoBe:ti

2 RELATED WORK

Many interesting vision-based approaches for pedestedaction and tracking have
been proposed. Here, we only focus on research using a mien@amera in the
visible spectrum. Thus, we omit work related to the use ahirgfd cameras and stereo
vision. For the earlier work on this topic, refer to the sywef Gavrila [9] andLi et
al. [12]. More comprehensive surveys, including the mos¢n¢research efforts in the
field, can be found in [8], [6], [5].

For the detection of pedestrians, various combinationgatures and classifiers
can be applied to recognize a pedestrian. Selecting theatdeature is important
because overall performance of the system depends on ttendisative power of
features used in detection algorithm. Recent researchsstiowe main features: ap-
pearance, shape, and motion. Some of the features usedpfearamce-based detec-
tion are Haar wavelets [15], and Gabor filter outputs [2]. 28][ texture information
is extracted using simple masks (called Haar-like feajui@sd classification is per-
formed based on integrating the weak classifiers obtairoed fhese masks. As for the
shape-based features, symmetry, edge template [10]ghastoof oriented gradients
(HOG) [4], [25], edgelet [24], and shapelet [18] have beepl@ixed. Motion is also
an important cue in detecting pedestrians. However, indlse of cameras installed on
a moving vehicle, it is not easy to find independent movingots. Thus, a more com-
plicated method is required to compensate for ego-motigh@fvehicle. Compared
to motion cue, the beauty of shape-based approach is thet itecognize both mov-
ing and stationary pedestrians. In addition, the discratie power of shape-based
features is usually stronger than that of appearance-tfeaedes. For the tracking of
pedestrian, a number of mathematical frameworks have begoged. Kalman filter
or particle filter-based methods, mean-shift algorithnd, aptical flow-based methods
are the most frequently used frameworks for such tasks. Qh 3avrila and Giebel
used an — 3 tracker to overcome gaps in detection. Indeed, the trackarsim-
plified Kalman filter with a constant velocity model and pregimined steady-state
gains. Particle filters have shown robust performance idlagnnon-Gaussianity and
non-linearity. Smithet al. [20] used a particle filter successfully to track a able
number of interacting people using a fixed camera. InC8maniciuandMeerused a
color histogram computed from a circular region as a remt@sien of an object. In-
stead of performing an intensive search for locating theabjhey use the mean-shift
procedure. The mean-shift tracker maximizes the appearsinglarity iteratively by
comparing the histograms of the object and the candidatenggn the next image.
Another approach to track a region is to compute its traiasiaty using an optical
flow-based method. Optical flow methods are used for gemgratense flow fields
by computing the flow vector of each pixel under the brighsrmmnstancy constraint.
This computation is always carried out in the neighborhobthe pixel either alge-
braically [14] or geometrically. In [19]Shi and Tomasiproposed the KLT tracker



which iteratively computes the translati¢du, dv) of a region (e.g.25 x 25 patch)
centered on an interest point. Once the new location of tteedat point is obtained,
the KLT tracker evaluates the quality of the tracked patchcomputing the affine
transformation between the corresponding patches in catige frames. If the sum
of square difference between the current patch and theqtegigatch is small, they
continue tracking the feature, otherwise the feature miakted.

3 FAST BICYCLIST DETECTION

The goal of the detection process is to recognize bicydistsfind their exact location
from a static image. One of the most common solution is to dedinject detection
as a binary classification problem using a traditional slidivindow approach. The
sliding window method evaluates a sub-image at multipledéht scales and locations
over the images. At each location, features are extracted fhe sub-image and the
classifier is run on these features to check whether themegiotains interest objects.
Naturally, next fundamental questions are “What featuresaost discriminative ?”,
“How can we speed up the whole detection process ?”,and “@afeatures cover all
variability in appearance ?” We will discuss each of thesestjons and give our best
answers in the following subsections.

3.1 Integral HOG Features

For the answer to the first question, a number of features bega explored. Some
important features are discussed in Section 2. Accordinlggagecent comprehensive
evaluation studies [5], [6], it is shown that histograms dénted gradients (HOG)
still shows best performance as a single feature relatiogtter existing feature sets.

In [4], Dalal andTriggsproposed a dense encoding scheme of local histograms of
oriented gradients (HOG). The aim of this method is to degcain image by a set of
local histograms. These histograms count occurrencesdfet orientation in a local
part of the image. More specifically, feature extractiomipliemented by dividing the
image into small spatial regions (or “cells”). For each edthcal 1-D histogram of gra-
dient directions is accumulated over the pixels found int tiedl. To make the method
invariant to illumination and shadowing, the authors alsomalize the local responses.
The HOG feature descriptor as an object representationdws lsed successfully to
classify objects in combination with a linear SVM. Howewense HOG representa-
tion is unfortunately computationally too intensive foreal-time application. To solve
this problemZhuandAvidan[25] proposed a novel method by exploiting the concept
of Integral HOG. The Integral HOG is an extension of origiH&)G features for a fast
evaluation. It is inspired by “integral image” [21] whicH@ls very fast extraction of
Haar-like features and the “Integral Histogram” [17] whidlows efficient histogram
computation over arbitrary rectangular image regions.

Following their work, we exploit a fast method of calculafithe HOG features.
The first difference with original HOG representation corfresn how the result of
gradients of the image is saved. For each bin of the HOG, agriatimage is computed
and is saved separately. Since we use nine orientation tiims,integral images are
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Figure 2: Feature selection process using AdaBoost

constructed. These integral images are used later to cenaffidiently the HOG for
any rectangular image region only with< 9 image access operations.

3.2 AdaBoost Classifier

Both fast feature extraction and fast classification areiaffactors for the second
guestion. We already have the half of the solution with the afsintegral HOG fea-
tures. The second half of the solution comes from the idepqsed byViola and
Jones[21]. They used a variant of AdaBoost learning techniquerid the best set
of Haar-like features and to construct a cascade of classifidthough this rejector-
based cascade is still run in the sliding window manner,atrtatically speeds up the
detection process by focusing attention on more promiségipns of the image. In
other words, the goal of constructing a cascade is to matchdmplexity of a classi-
fier that operates over a small number of features with thiBopaance of a classifier
that operates over a very large number of features. Simil&nuandAvidan[25] fol-
lowed the same approach with the Integral HOG features byingthe size of blocks,
which is another key difference compared to the original H@@resentation and a
linear SVM as a weak classifier. While fixed-size blocks (tgtly, 16 x 16 pixels)
are used in the original HOG, in the Integral HOG case, véeialze blocks are used
instead. Combined with constructing a rejector-basedatiesoveak classifiers with
fixed-sized blocks are not informative enough to allow fagtction in the early stages
of the cascade. Thus, they use a much larger set of blocksdhain size, location
and aspect ratio and then use AdaBoost to select the bastd¢ate evaluated in each



stage, where each feature corresponds to one block. Thenctmstruct a cascade of
classifiers using weak classifiers associated with thesertsa

In our system, there are over 2,909 variable-size blockscésgd with frontal
view detection window because we us&4x 128 detection window and consider
variable block size ranges froi2 x 12 to 64 x 128 and width/height ratio$l : 1),
(1:2),and(2 : 1). Even though the number of all possible variable-size 8dsk
very large, the primary assumption of AdaBoost, which haanb@oven empirically,
is that a very small number of these features can be combmé&atin an effective
classifier [21]. A graphical summary of the boosting prodssshown in Figure 2.
In the AdaBoost algorithm, each round of boosting selecesfeature from the 2,909
potential features. It means that we can select one bestif@aghat minimizes the
overall error. Afterwards, we re-weight all the data to feom the mistakes. In our next
iteration, we can find the next best classifier based on thghtesil data. Finally, we
construct a cascade of classifiers by combining all the iflassat the end according
to their confidence.

3.3 View-based Detector

Our last question is that how we can deal with dramatic agyear changes of a bi-
cyclist according to its viewpoints without violating theal-time constraints. HOG
representation of some viewpoints of a bicyclist is visztedi in Figure 3. In this pa-
per, we propose to use four view-based detectors: fromtat,and right/left side view.
Of course, these four view Integral HOG representation atgde cannot cover all
variability in appearance, but we believe that this is asaable approach in that four
views can capture pretty much of its characteristics andngdahother view detector
(i.e. 45° or 135°) does not improve detection accuracy enough to compenddte a
tional computation. To support this argument, a comparesgeriment between six
view detector (including5° and135° views) and our four view detector is conducted
and discussed in Section 5. For each view detector, as dsdursthe previous subsec-
tion, the main concern is to find a set of variable-size blogk&h maximize overall
classification accuracy.

4 FAST BICYCLIST TRACKING

Once the bicyclist has been detected in the image, the regxisto track his/her po-
sition from frame to frame. Because of the relatively higistcof the detector, we
are interested in finding an algorithm with a lower comphgkitorder to do tracking.
Tracking exploits motion-related temporal constraintdina the correspondence of
moving objects in the image sequence. To this end, sevetthlematical frameworks
have been proposed (this is roughly discussed in Sectiod\f@&r performing a com-
parative investigation of these existing tracking techieis] we chose to apply a tradi-
tional Lucas-Kanade tracker [14] to our framework. The ogder this decision is that
it can be integrated with our high-level patch managemergse to shows promising
performance in general settings and various efficient eitas of the algorithm have
been proposed to allow its real-time implementation.
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Figure 3: HOG representation of each viewpoint of a bicyclis

4.1 Multiple Patch-based Lucas-Kanade Tracker

The Lucas-Kanade tracker is one of the most popular versibwo-frame differ-
ential methods for motion estimation. The goal of the Lukasade algorithm is to
compute optical flow by minimizing the sum of squared erraneen two subsequent
images in the video sequence: the templatend the image warped back onto the
coordinate frame of the template. In the case of bicyclastking, the template is a
region containing a bicyclist which is generated by the cl&ta process. To deal with
the fact that bicyclists are non-rigid (the person’s legstgpically in constant motion,
and the appearance of the bicycle changes drastically batfrvental and side views),
we propose a multiple patch-based approach of the Lucasdéalgorithm. Rather
than using one big template, we find a set of good featureg wsidarris corner de-
tector [11] and then try to track each of these multiple srpatiches independently
using the Lucas-Kanade algorithm. However, as illustrateeigure 4(a), we cannot
guarantee that all the multiple patches are necessaritydfa@n the bicyclist. While
most of them are on the bicyclist, showing similar opticahfieectors, some of them
are on a background, showing quite different motion vectdhais, an additional step
is required to filter out these unnecessary patches. We peapaovel mechanism that
we will describe below.

4.2 Control Scheme of Multiple Patches

We propose a new method to control geometric constraintsudtipte patches based
on spectral clustering algorithm [23]. Spectral clustgria a popular graph based



modern clustering algorithm. It is not only simple to implemi but also can be solved
efficiently by standard linear algebra methods. We found #hapectral clustering
algorithm gives a formal mathematical tool to tackle ourijdeon in a consistent way.
In our problem context, spectral clustering is based onaandialks on a similarity
graph constructed by the multiple patches. Then, spedtrstiering can be interpreted
as trying to find a partition of the graph such that the rand@tkstays long within the
same cluster and seldom jumps between clusters. The randtatan be formulated
via following three steps:

e Step 1: Construct a similarity graph.
e Step 2: Assign weights to the edges in the graph.

e Step 3:Define a transition probability matrix.

In first step, we can connect each patch téitearest neighbors, or connect each patch
to all neighbors withire. A similarity function, which defines the edge weights in the
second step, plays a pivotal role in getting good clustepegormance. Here, we
use a magnitude difference of optical flow vectors as wellisisdce among multiple
patches. Note that the direction of optical flow vectors cdine a good measure since
it shows convergent or divergent pattern of flow when a biytiows longitudinal
motion. Our similarity function is thus defined by:

s(i, ;) = e (ellzi—z;||+B]lmi—m;ll) (1)
where« and 3 are constants. The closer the patches and the smaller a todgni
difference of the patches, the higher the weight. Finally,define a Markov random
walk over the similarity graph by constructing a transitpmobability matrix from the
edge weights. Formally, the transition probability of junmgpin one step from patch
to patchj is proportional to the edge weight;; and is given byp;; = w;;/d; where
d; = Zj w;;. Then, the transition probability matrix of the random wislklefined by:

P=D"'W. (2)

Spectral clustering, which can be viewed as a outliers tleteprocess in this case,
is performed by normalized spectral clustering algorithroppsed by Ng, Jordan, and
Weiss [23]. Algorithm 1 describes the whole process of oteclpmanagement scheme.
We run this algorithm at every frame and we filter out bad pegdby averaging its

clustering results.

5 EXPERIMENTAL RESULTS

We evaluated our detection and tracking framework usinguareal world datasets.
We first conducted frontal and side view bicyclist detec#éxperiments using a new
bicyclist dataset which we collected from the Internet. Dhiginal HOG based de-
tector was tested first and then real-time enhancement tisengntegral HOG and
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Figure 4: Example of patch management scheme. (a) Seleateltgs by Harris corner
detector (b) Optical flow of each patch (c) 3-nn similaritagh (d) Clustering result

Algorithm 1 Patch management scheme based on spectral clusteringhaigor
Require: Similarity matrix.S € R, number of clusters
1: Construct a similarity graph using-nn.
2: Make its weighted adjacency matiik using (1).
3: Compute the normalized Laplacian:
Lgym = D™Y2LD~1/2,
4: Compute the first eigenvectorsy, ..., vy Of Lgym,.
5: LetV € R™** be the matrix containing the vectars, ..., v;, as columns.
6: Form the matrix/ € R™** form V' by normalizing the row sums to have norm 1,
that iSuij = UU/(Zk Ufk)l/Q.
7. fori=1,...,ndo
8: lety, € R* be the vector corresponding to théh row of U.
9: end for
10: Cluster the patchésg;);—1 ... », With k-means algorithm into cluste(s, ..., C.
Ensure: ClustersAy, ..., A, with A; = {jly; € C;}

AdaBoost was compared with the first method. With regarddgdié tracking, we col-
lected video data from suburban environments using oumamous vehicle “Boss”,
Carnegie Mellon University’s first place winning vehiclefn the 2007 DARPA Urban
Challenge. Six video sequences were recorded. Three categdthe sequences are
from stationary Boss and the other three sets are from m®asg. Tracking exper-
iments for each case using the multiple patch-based Lueas#e algorithm are also
conducted.

5.1 Probabilistic Analysis of Detector

From a practical perspective, it is very important to camstta classifier producing a
posterior probability. The probabilistic output of a cliéies can help in post-processing
such as when combining more classifiers together or whenrggmg a Precision-



Recall (PR) curve to analyze a classifier's performance. év@w the output of Support
Vector Machines (SVMs) and AdaBoost that we use in this werkn uncalibrated
value, not a probability. To solve this problem, we implemBfatt's method [16]
which convert a classifier output to a calibrated posteriobpbility for probabilistic
analysis. According to [16], the motivation for this mettisdising a parametric model
to fit the posteriorP(y = 1|f) directly instead of estimating the class-conditional
densitiesp(f|y). The author trains an SVM first and then trains the parameteas
additional sigmoid function to map the SVM outputs into pablities. As for the
parametric model, the author suggests using a form of siggmdiich is expressed by:

1

Ply=11)= 1+exp(Af + B)

3)

The parameters of andB are fit using maximum likelihood estimation from a training
set. We implement their method to convert the outputs of SMidaboost to posterior
probabilities successfully. Furthermore, we use theibphility outputs to generate
an PR curve for a comparison of the performance of originaG-#d Integral HOG
based detectors.

5.2 Performance Analysis of Detector

In our bicycle detection experiments, we used 130 of the atimed imagesd4 x 128

for front view and128 x 128 for side view) along with their left-right reflections as
positive training samples. For the negative samples, wd 12&8 images from the
INRIA Person datasét(ten times the positive examples) that included backgreund
that do not contain either pedestrians or bicycles. In ttst éxperiment, we used 95
images with 124 labeled bicycles (front view:42?° or 135° view:42, side view:40) as
a test set. We trained a linear SVM using the training set dredifa sigmoid function
to the classifier output. The coefficietsand B for the sigmoid function (Equation 3)
were found to be-4.8260 and0.5641, respectively. Second, we ran the original HOG
detector on the test images. Based on the statistics of stsdgeand detection results,
we computed basic metrics and generated a PR curve (Figuoe Bgtter analysis.
The Hit Rate (HR) and the number of False Positives (FP) ottassifier are shown
in Table 1. As discussed in Section 3 C, we feel the four viet@gral HOG detector
is better in terms of its accuracy/efficiency.

Table 1: Classification rates for bicyclists using HOGs

Detectors Hit Rate (%) | False Positives (#)
Original HOG (four view) 65.12 175
Integral HOG (four view) 65.12 226
Integral HOG (six view) 65.12 248

http://pascal.inrialpes.fr/data/numan/, accessed on 32009
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class: bicyclist, subset: test
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Figure 5: PR curve for three detectors. The magenta plot shiog/response for the
brute-force HOG implementation and the blue and red plotvsthe responses of the
Integral HOG implementation for six view and four view, respively .

For the real-time enhancement method, we found out the mfwsative blocks
from which Integral HOG features can be extracted. As an @kauof bicyclist de-
tection, the first feature selected by the AdaBoost algorileemed to be the overall
shape of a bicyclist. Secondary and tertiary features deduhe person’s head, their
torso, and the wheel of a bicycle. Several of these seleetds and their confidence
values (alpha) as generated by the AdaBoost algorithm akersim Figure 6. Follow-
ing the same approach whighuet al. proposed in [25], the next step is to construct a
cascade of weak classifiers. The cascade consists of 5 lelete the weak classifiers
are linear SVMs using a 36-D feature of each block. Our oVéeature set consist
of 2,909 blocks of different sizes, locations and aspedabsatThe first two levels in
our cascade only contain four linear SVM classifiers eactiyaject 70% of the detec-
tion windows. Thus, the average number of blocks to be etedur each detection
window is as low as 6.4. The Hit Rate (HR) and the number ofé-Rissitive (FP) of
this cascaded classifier are compared between six view amd/iew-based detector.
As shown in Table 1, while six view-based detector incre&sesate slightly, it also
entails more false positives. In addition, an ROC curve wasgared with previous
original HOG case in Figure 5. While this approach shows canaiple results with the
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Figure 6: Several of the selected regions and confidenceséilpha) as identified by
the AdaBoost algorithm.

original HOG in terms of accuracy, in terms of speed, it shawgp to 30X speedup
over the naive implementation using the sliding windows.

Table 2: Details of two image sequences used in the evatuatio

Sequences Size Frame-number FPS | Bicyclist-number
‘stationary’ | 320 x 240 107 15 1
‘moving’ 320 x 240 30 15 1

5.3 Performance Analysis of Tracker

Tracking experiments were conducted on the six videos whiihollected from Boss.
Three videos of a person riding a bicycle were recorded frassB cameras while the
vehicle was stationary and three more videos were obtainoed Boss while it was in
motion. Here, we evaluate the Lucas-Kanade tracking dlgarwith a patch manage-
ment scheme based on spectral clustering algorithm usiognbage sequences, each
of which is one of the most challenging sequence from the @#es. In the stationary

12
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Figure 7: Performance analysis of the tracker : stationasg ©n top, moving case on
bottom.

case, a bicyclist rides along the road in front of Boss andesak‘u-turn” so that the
left side, rear, and right-side of the bicycle are seen anst e tracked. In moving
case, both the bicyclist and Boss are moving along the ro#tteisame direction and
Boss overtakes and passes the bicyclist. The moving imajergtion has a back-
ground which undergoes ego-motion that depends on the eamaion as well as the
scene structure. Table 2 describes each image sequence.

For the performance of tracking, as partially shown in Fég8r stationary cases
show better tracking performance compared to moving cadese detailed analysis
for each case is investigated by computing tracking erreta/éen the ground truth
trajectory and the estimated path of a bicyclist. Theseremefer to the Euclidean
distance between the bicyclist detection (centers of bimgrtabxes are considered) and
the ground truth created by a trained professional. Fig{sg 77(d) clearly illustrate
the performance comparison of our approach in two diffesequences (see Figures
for the details). An abrupt change in Figure 7(b), 7(d) is tiue irregularity of video
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Figure 8: Tracking results for bicyclist: stationary case

logging process. In our six videos, the Lucas-Kanade traglh a patch management
scheme based on spectral clustering algorithm successfatiks the bicyclist save
for the case in which the bicyclist and Boss are both movintpéopposite direction
and pass each other. In this case, the default set of pananfietehe tracker could
not account for the fast relative motion of the bicycle andi@onal tuning work is
required to address this issue.

Detection runs at 1 sec/frame on a P-IV 2GHz computer with 2&Bnory and
tracking runs at 0.6 sec/frame. Tracking is much more rothsst detection in that,
the target is hardly lost; however, in the detection stagarget may not be detected
all the time. Thus, we interleave detection and trackingesteby applying detection
every five frames or any time the tracking of a bicyclist i¢ todind a balance between
robust output and finding new bicyclists.

6 CONCLUSIONS AND FUTURE WORK

This paper presents a fast bicyclist detection and trackimgework. To robustly

detect bicycles, we have implemented a system that usesgrishs of Oriented Gra-
dients (HOG) descriptors to extract features from imagebthen employ a linear
Support Vector Machine (SVM) to classify whether a given-guhge contains a bi-
cycle. We have affected a dramatic speedup for the detegtimgess by integrating a
cascaded classifier concept in combination with HOG featafeariable-size blocks.
Once the bicycle has been detected in the image, the objeetcised in subsequent
video frames with a robust and flexible implementation ofltheas-Kanade tracking
algorithm modified to operate over multiple small image pat This multi-patch
tracker allows our system to effectively track the objearewhen it changes orien-
tations in the image. We have implemented a novel patch neamegt scheme and
integrated the method into our framework. Several expeartmshows the effective-
ness of each component of the proposed framework. As paurofuture work, we

will develop a tracking method which takes into account tlegdle motion kinematics.
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