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Abstract To safely and efficiently guide personnel of search and rescue operations
in disaster areas, swift gathering of relevant information such as the locations of
victims, must occur. Using the concept of ‘repellent virtual pheromones’ inspired
by insect colony coordination behaviors, miniature robots can be quickly dispersed
to survey a disaster site. Assisted by visual servoing, dispersion of the miniature
robots can quickly cover an area. An external observer such as another robot or
an overhead camera is brought into the control loop to provide each miniature
robot estimations of the positions of all of the other near-by robots in the robotic
team. These miniature robots can then move away from the other near-by robots on
the team, resulting in the robot collective becoming swiftly distributed through the
local area. The technique has been simulated with differing pheromone persistence
levels and implemented using the miniature Scout robots, developed by the Center
for Distributed Robotics at the University of Minnesota, which are well-suited to
surveillance and reconnaissance missions.

Key words Dispersion · distributed robotics · mobile robots · miniature robotics

1. Introduction and Problem Description

Remote surveillance and reconnaissance applications frequently make use of mul-
tiple remote sensing devices that report back to a human or robot coordinating
agent. When this technique is employed, the coordination agent needs to assure that
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Figure 1 Two Rangers with
seven Scouts.

adequate sensor coverage is attained. If the application is time-critical such as is often
the case at a disaster site, then this sensor coverage must be achieved quickly.

One approach to operating in this scenario is to employ a mobile robotic or human
agent that is capable of long distance travel to coordinate, deploy, and communicate
with multiple smaller sensing agents. The coordination agent can then query the
smaller sensing agents for information and move them remotely to increase the
area surveyed. The Center for Distributed Robotics at the University of Minnesota
has developed such a team of robots. Larger ‘Ranger’ robots which are capable
of navigating long distances over rough terrain without needing to recharge their
batteries are used to traverse the environment and to deploy the miniature ‘Scout’
robots (shown in Figure 1). Equipped with a magazine and a spring-based delivery
mechanism, a Ranger can deliver up to 10 Scouts into a target area. The Ranger’s
more powerful onboard computer can then be used to coordinate Scouts and relay
status information [14].

A need for a fast dispersal technique exists regardless of whether the coordinating
agent is a human or a robot. When the coordinating agent is a human equipped with a
wearable computer interface, commands can be sent to the robots from a hand-held
controller and sensor information can be returned to the human through a head-
mounted display. However, a human operator cannot be expected to simultaneously
control each robot individually during deployment, since the operator’s attention
must be completely dedicated to teleoperation of a single robot. Thus, the work
described in this article is designed to create a method for efficiently deploying and
dispersing robots such as the Scout robots regardless of the type of coordinating
agent. The robots as soon as they are out of the observer’s field-of-view might employ
visual servoing techniques in order to navigate towards their desirable goal.

2. Related Work

Team behaviors have been studied in a variety of disciplines from the biological
studies of herds and swarms to the sociological studies of societies of humans.
Physicists and chemists have studied the behaviors of collections of a variety of
interacting bodies from gravitational planetary forces to the movements of various
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particles. Many of these studies of interactions in the natural world have become
models for the behaviors of teams of robots, particularly as the robotic teams engage
in tasks such as dispersion and area coverage.

In 1992, Gage categorized the concept of ‘area coverage’ by a robotic team into
three basic types of coverage: ‘Blanket coverage,’ in which the main objective is
to maximize the total detection area; ‘barrier coverage,’ where the objective is to
minimize the possibility of undetected penetration of a defined barrier; and ‘sweep
coverage,’ where the objective is to cover an area with a sweeping or moving barrier
[3]. Using this taxonomy, the objective of the work described in this paper is to
quickly deploy robots and achieve either a blanket coverage or a circular sweep
coverage of an area.

In 1992, Gage also designed some robot coordination simulations such as ‘con-
densation’ based loosely upon biosystem analogies such as pheromones [3]. In the
early work by Arkin and Ali, the dispersion of a robotic team was carried out by
a random-wandering behavior coupled with moderate robot repulsion as well as
more significant obstacle repulsion [1]. In 1995, directly inspired by animal navigation
routines, M. Matarić and her research group designed a dispersion algorithm that
moves an agent away from the centroid of the local density distribution of the other
agents that are visible to that agent’s sensors [7].

In 1999, Spears and Gordon provided distributed control of large collections of
agents by having agents react to artificial forces motivated by natural laws of physics,
observing that in the real physical world surprisingly complex behaviors arise from
simple interactions between entities. However, their applications were self-assembly
and self-repair rather than dispersion for the purpose of surveillance [15]. In another
virtual physics approach, Howard et al. used a ‘potential-field-based approach’ to the
deployment of a mobile sensor network by treating their robots as virtual particles
subjected to virtual forces [5]. These forces cause each given robot to be repelled
from the other robots as well as from other obstacles in the environment with a
potential that is proportional to the sum of the reciprocals of the distances from the
first given robot. Though this portion of the algorithm is somewhat similar to the
work presented in this paper, Howard et al. continue to run their algorithm until
the network as a whole reaches a state of static equilibrium while in this paper
after the initial dispersion, other robot behaviors such as locating a specific goal are
allowed to operate [5].

The work that perhaps shares the most motivational similarities with the tech-
niques described in this paper is the research of Payton et al. which employs
techniques for coordinating the actions of large numbers of small-scale robots used
in surveillance, reconnaissance, hazard detection, and path finding [8]. As in our
project, they exploit the biologically inspired notion of a ‘virtual pheromone,’ but
they implement their virtual pheromones using transceivers mounted atop each robot
rather than with global information from an overhead camera [8, 9].

Batalin and Sukhatme also address the problem of multi-robot area coverage from
the premise that local dispersion of robots will ultimately achieve good global area
coverage [2]. As in this paper, their algorithms result in their robots being ‘mutually
repelled’ from one another, however like Payton et al., they depend upon their robots
to be able to sense or recognize one another rather than on global information such
as from an overhead camera.

Stoeter et al. effectively use an overhead camera to track and direct a miniature
Scout robot marked with color-markers as it travels, orients on a target, and climbs
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stairs. Though the extension to the problem of multiple robots is discussed in the
article, experiments are carried out with a single robot [17].

3. Modeling with Repellent Pheromones

Pheromones are chemicals used in nature as a form of indirect communication that
can produce organized group activities. For example, ants leave a trail of pheromone
to mark the path that they traverse between their nest and a food source. As more
ants traverse this path, the pheromone trail is reinforced. The main purpose of this
paper is to model ‘repellent pheromones’ in order to bring about the dispersion
of a robotic team. Many approaches to dispersion require prior knowledge of the
deployment area, but this approach has the advantage that it requires no map of
the area and the robots need no self-knowledge of their location within the area.
Other approaches to dispersion use a global geometric model, while our approach
is based only upon decisions that are made locally. This has the distinct advantage
of flexibility; suppose one robot loses its ability to travel, the local approach will
automatically adjust to the given situation while the global approach would require a
complete reworking.

Virtual pheromones should degrade as the distance from the virtual pheromone
emitter increases. Since a robot may be subjected to multiple virtual pheromone emit-
ters from different directions, we model the cumulative repellent force of the virtual
pheromones as a vector sum with the vector length given by a decreasing function.
How quickly the virtual pheromones degrade as distance increases determines which
decreasing function is employed. For our vector length, we chose to use a power of the
reciprocal of the distance the virtual pheromone travels. This choice is motivated by
natural phenomena such as electric field strength, which is inversely proportional to
the distance from a charged object. Simulations have been run by varying persistence
of the pheromone over distance by varying the power on the reciprocal of the distance
and runs have been carried out with unit power.

In particular, if x is the position of robot R, then pi =
1

‖x−xi ‖
l will model the level of

virtual pheromone emitted by robot Ri that is detected by robot R. Here the positive
number l is called the localization factor and is used to vary the persistence level
of the virtual pheromone. Clearly, increasing l will cause the pheromone to have
a more localized effect on nearby robots because the strength of the pheromone
will fall off more rapidly over distance. The direction of this virtual pheromone is
di =

x−xi
‖x−xi ‖

. Thus, the total repellent direction of all of the detected virtual
pheromones is

∑
i pi di =

∑
i

x−xi

‖x−xi ‖
(l+1) .

With n robots in randomly distributed starting positions, iterating this algorithm
infinitely many times on an infinite plane, will, in nearly all cases, direct the robots
to positions that approximate the vertices of a regular n-gon, thus asymptotically
approaching the perfect circular sweep coverage of the area. In situations with more
pathological starting positions, such as with three or more robots whose centroids are
exactly in a line, the noise inherent in the physical system should cause one or more of
the robots to move off of the line and then asymptotically approach perfect circular
sweep coverage. In simulations as the localization parameter l is increased, robots
achieve a given approximation to perfect circular sweep coverage more quickly. This
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can be seen by considering the standard deviations of the robots’ nearest neighbor
distances.

In our simulation work, we employ velocity vectors for the trajectories of our
simulated robots. Since velocity is the change in position over the change in time, we
consider velocity as a derivative and approximate the derivative via Euler’s method.
In particular, the velocity equations yield a set of differential equations that is solved
to obtain the new position vector for each robot.

As expected, increasing the localization parameter l that represents the virtual
pheromone’s persistence over distance causes the dispersion of the robots to be
decreasingly effected by robots that are farther away than those nearer.

4. Results and Analysis

4.1. Color Tracking of Scout Robots

A robot such as a Scout that is small enough to avoid detection and can access hard-
to-reach areas is extremely useful for surveillance and reconnaissance applications,
but the small size brings certain challenges to the task of using color markers for
tracking. The Scout robot (shown in Figure 2) is cylindrical, measuring only 11 cm
long and 4 cm wide. The electronics of Scouts include microcontrollers, transmitters,
magnetometers, tiltometers, and shaft encoders. The Scout has differentially driven
wheels and a leaf-spring tail jumping mechanism. Scouts also carry a sensor payload,
usually a miniature video camera, used to broadcast environmental information over
an analog RF transmitter. For color tracking, two color markers are needed to be as
widely separated as possible on each Scout robot in order to obtain accurate location
and orientation information, but the markers must not interfere with the workings of
the Scout. For this reason, color bands of approximately 1 cm in length encircle only
the two opposite ends of the deployed Scouts.

By quickly providing information on the relative locations and orientations of each
of the Scout robots at the point of deployment, an overhead camera and standard
vision techniques are used to assist in the dispersion of the robots. Each of the color
markers is tracked as a color ‘blob,’ and the centroids of these blobs are averaged

Figure 2 Two Scout robots
aside a ruler for scale.
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to determine the location of the centroid of the Scout robot itself. The Scout’s
orientation is a vector in the direction of the forward direction of locomotion for
the Scout. This is computed by rotating 90◦ from the vector along the Scout from the
centroid of the left-marker to the centroid of the right-marker.

The overhead camera used for the experiments was a Panasonic GP-KR222 model
with 480 lines horizontal resolution and a minimum scene illumination of 3 lux at
f/1.4 (or 2 lux at f/1.2). The issue with color tracking is that it typically needs fairly
good lighting conditions to work properly. If you are using nicely saturated colors,
as the light becomes dimmer, these colors become darker and fall out of the range
of what might be distinguished easily by a lookup table. Initially the color-tracking
for this experiment was conducted using the same techniques and software as Stoeter
et al. [18], however though the technique worked well for a single Scout robot, it
proved not to be easily scalable. In [18], the ends of the Scout were also marked
with different colors to aid pose estimation. Smoothing was accomplished with a
5 × 5 median filter and then converted from the RGB to the HLS color model.
Thresholding of the image took place with the known ranges of hue, lightness, and
saturation from both markers. A circle was fit to the largest blob in the thresholded
image for each region of interest in order to be more sure of finding the correct blob.
Using the Stoeter technique, hand-selected color ranges in the HLS color space were
used to identify each color marker. This worked very well to segment widely spaced
colors in the HLS color space as red and green. However, as the number of color-
markers increased, it became increasingly difficult to create disjoint color ranges.

The difficulties with glare and changing lighting conditions, caused the sizes and
positions of the detected blobs to vary widely. Using these statistics in the calculations
of Scout positions served to amplify the difficulties. In order to test the reliability of
the range-based color selection system, color-tracking was performed with immobile
Scouts. As can be seen in Table I, the error in orientation was untenable; with an
error of 142◦, even an optimal algorithm for dispersion would have seemed to give
only random results.

Finding ways to address problems of noise is crucially important since any percep-
tual system which operates in the real world must be able to recognize and correct
for corrupted sensor data if it expects to operate correctly [4]. In related work [13],
Rybski et al. used a simple frame averaging algorithm to reduce the effects of noise,
but this approach could not be used on data that was as poor as in Table I.

In order to achieve accurate tracking, we adopted the use of the ActivMedia Color
Tracking System (ACTS) [12] for performing color thresholding and computing blob
statistics (interface shown in Figure 3). ACTS allows users to select regions of color in
an image not simply as ranges, but almost as finely as selected sets of points in RGB
space. In fact, ACTS stores the projections of the RGB voxels onto the three planes
Red-Green, Blue-Green, Red-Blue, giving far more flexibility than a simple sub-cube

Table I Deviations in Scout-tracking using ranges in HLS color space

Using HLS ranges Scout 1 Scout 2 Scout 3

Standard deviation in x position (pixels) 17.7 5.9 26.9
Standard deviation in y position (pixels) 7.0 3.0 12.6
Standard deviation in orientation (degrees) 27.5◦ 142◦ 71.7◦
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Figure 3 ACTS interface.

in RGB space. These color regions are then tracked as blobs, and statistics are
computed for each blob. ACTS users can train color channels by selecting individual
pixels of color from the image by clicking on a window to select the color markers
directly. The ACTS-trained color channel files are stored as look-up table files. ACTS
is able to track 32 individual color channels simultaneously at greater than 30 fps on a
Linux Pentium 160 MHz, so its speed and number of channels are more than sufficient
for our application since the limiting factor in our dispersion speed proved to be the
RF command speed.

Using ACTS with a window size of only 320 pixels × 240 pixels and the above-
described technique for color-tracking gave us average standard deviations of Scout
positions of less than two pixels and of orientations of less than 3◦ for a set of up to
eight selected colors (see Table II). We elected to track only blobs larger than four
pixels wide, since smaller blobs are likely to be simply noise due to such issues as the
combined effects of fluorescent and natural lighting conditions changes.

4.2. Radio-Controlling the Scout Robots

After implementing color-tracking for detecting current robot locations and orien-
tations and modeling with repellent virtual pheromones, the next step is to direct

Table II Color markers used for color-tracking of up to four Scouts

Color markers Scout 1 Scout 2 Scout 3 Scout 4

Right marker Neon orange Sky blue Dark green Teal blue
Left marker Neon green Yellow Deep purple Neon pink
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the movements of the robots. Due to the small size and power constraints of the
current version of the Scout robots, very limited on-board computational power
is available, since they require their two CPUs for network communications and
actuator control. Thus, intelligence for control decisions must be provided externally.
This implementation of dispersion of the Scout robots involves external visual
servoing [6] and requires the auxiliary hardware of a computer equipped with a
framegrabber to run the image-processing algorithms. This computer could be either
a Ranger or another machine within reception range of the Scout’s analog video
transmission.

To overcome the Scouts’ size-imposed limitations and to connect multiple com-
puters for complex missions, a distributed software architecture has been developed
that supports the transparent integration of remote resources [16]. A functional view
of missions is taken, so all hardware resources, including the robots, are partitioned
into finely grained resources that can be requested by functional components.

The architecture consists of the four subsystems shown in Figure 5:

• The User Interface subsystem provides run-time control and feedback.
• Mission Control hosts prioritized components that, together, make up a solution

for a mission. Components are only partially-ordered, so many can execute in
parallel.

• The Resource Management contains resources, such as cameras and transmission
frequencies, that can be requested by components.

• The Backbone provides basic services that connect the other three subsystems
transparently over all processors available for a mission [16].

This distributed software control architecture dynamically coordinates hardware
resources and shares them between the various clients, allowing for simultaneous
control of multiple robots. Each Scout has a unique network ID which allows
commands to be routed to specific robots while being ignored by others allowing
multiple robots to be controlled from a single RF modem. Motion commands are

Figure 4 Connecting a
wearable processor to the user
interface and Scout radios.
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Figure 5 The core of the
distributed software
architecture is comprised
of four subsystems.

Resource Management

Mission Control

User Interface

Backbone

then transmitted from a remote source and are received and executed by the Scout
robot.

As shown in Figure 4, the processor can be portable and can exist between
the user interface and the wearable controller. The computer receives inputs from
the operator and sends the appropriate commands to the radio. Received video is
captured by a framegrabber and is presented to the user via a head-mounted or an
arm-mounted display. This captured video can also be used by autonomous Scout
control programs running on the processor (Figure 5).

However, due to noise in the system such as radio interference, Scouts do not
always receive the commands that are sent to them. Even when they do receive the
intended commands, they may not receive the commands for the duration that the
command was intended. These issues cause control difficulty, particularly in finely
adjusting the pose of the Scout, since turning by varying degrees is accomplished by
directing the Scout to rotate one or both wheels for a certain duration of time.

Orienting the body of a Scout so that it faces a target head on is an important task
apart from the dispersion problem. In a variety of situations, the Scout needs to be
aligned correctly. Such scenarios could include docking with a larger robot such as
the Ranger for pickup, or for using landmarks for tasks such as localization. Previous
experiments in tracking Scouts have utilized pattern matching [11] and active contour
models [10], but neither approach proved completely adequate for the given task. The
inaccuracies can be seen in Tables III, IV, V, and VI.

Table III Trials for turning Scouts by a given angle

Requested turn angle Average turn error Communication failures

270◦ 3.1◦ 2
180◦ 4.6◦ 1
90◦ 10.1◦ 0
45◦ 5.9◦ 2
30◦ 3.3◦ 1
15◦ 3.1◦ 1

Two Scouts were used simultaneously for each trial. The average turn error was averaged over five
runs. Communication failures indicates the number of times a Scout failed to receive commands and
to move during an experiment.
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Table IV Trials for turning
Scouts for a given large angle Trial: 270◦ Trial: 180◦

Scout 1 Scout 2 Scout 1 Scout 2

270◦ No response 175◦ 175◦

270◦ 265◦ 182◦ 175◦

278◦ 272◦ No response 170◦

268◦ 266◦ 180◦ 178◦

No response 266◦ 178◦ 170◦

Average deviation: 3.1◦ Average deviation: 4.6◦

Scouts are able to receive radio signals on two different radio frequencies. How-
ever, in this work, all of the Scout commands are sent on a single one of these two
frequencies, because the single serial port of the processing computer is used to
direct the commands to the radio. The speed of the radio commands proved to be
the limiting factor in the speed of dispersion, because commands sent too quickly in
succession interfered with each other and caused the Scout to fail to be able to discern
the commands sent. Thus, a pause of between 150,000 and 300,000 µs was added to
slow the command rate. In addition because commands to different Scouts are sent
on the same frequency, only a single Scout is actually able to receive a command at a
given time instant (Table VII).

4.3. Dispersing the Scout Robots

Dispersion runs have been completed using the virtual pheromone model described
above with one, two, three, and four Scouts (where one Scout is included only for
testing the robustness of the algorithm). Given the unreliability of the radio signal
being correctly received, the results were surprisingly good. In Table VIII, results are
tabulated as deviations from optimal beginning with the three Scouts poses of (0◦, 0◦),
(0◦, 90◦), and (0◦, 180◦) (Figure 6). Error runs with more Scouts show similar errors.

Figure 7 shows the actual dispersion paths taken by the Scouts during various
runs. One notes that while some of the Scouts choose their direction quickly and
drive away, it is possible to see the adjustments of other Scouts as they correct their
turns. In the run with four Scouts, it is also possible to note an error in the color
tracking. The Scout in the upper right-hand corner of Figure 7e did actually head the
wrong direction and then retrace its path exactly. This error in the blob detection

Table V Trials for turning
Scouts by a given medium
angle

Trial: 90◦ Trial: 45◦

Scout 1 Scout 2 Scout 1 Scout 2

100◦ 90◦ 50◦ 46◦

93◦ 108◦ 52◦ 55◦

98◦ 108◦ No response 45◦

92◦ 102◦ 55◦ 54◦

101◦ 95◦ No response 50◦

Average deviation: 10.1◦ Average deviation: 5.9◦
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Table VI Trials for turning
Scouts by a given small angle Trial: 30◦ Trial: 15◦

Scout 1 Scout 2 Scout 1 Scout 2

28◦ 31◦ 20◦ 15◦

28◦ 29◦ No response 18◦

24◦ 25◦ 17◦ 18◦

34◦ No response 22◦ 10◦

30◦ 21◦ 17◦ 16◦

Average deviation: 3.3◦ Average deviation: 3.1◦

occurred for a single frame and so did not cause the Scout to traverse an incorrect
dispersion path in the end. Though such errors are infrequent, they are obvious when
viewing the data visually. Even given these issues, the trajectories of the Scouts create
a reasonable dispersion in each case.

As for a measure of team performance, one immediate limitation that comes to
mind is the Field-Of-View (FOV) of the camera. If the camera does not have a very
wide angle fish-eye lens (which will introduce other problems with color tracking and
chromatic aberrations), then the area under which the robots can travel will be quite
small. We also tried to implement some metric that involved the amount of space in
the FOV that was covered, or something to the effect of how far the Scouts reached
to the perimeter of the FOV, given the fact that they started in the center. That is,
how many reached the perimeter in a certain amount of time? However, we found
out that the dispersion errors were the best indicators given the FOV of the camera
employed.

This project explored the dispersion of a robotic team such as might be used for re-
connaissance and surveillance applications designed to operate in a semi-autonomous
fashion. A human operator is able to remotely direct the robot to disperse in
unknown areas and then allow the robot to do some of the tasks autonomously.
However, the next generation of Scout robot currently under development will be
much larger and more powerful with much more processing power on-board, so more
decision-making will be able to occur on-board these future Scouts without using the
communication channels. Since the communication has proved to be the factor that
solely determines the speed of the dispersion in this work, reducing the need for radio
communication should dramatically speed up the dispersion of the robots.

For our actual runs, repellent pheromones are modeled with a repellent force
given by the reciprocal of the distance the pheromone has traveled. We have also
completed simulations on robot dispersion behavior using pheromones that degrade

Table VII Dispersion errors with two Scouts from a given pose

Starting poses Average turn error Communication failures

(0◦, 0◦) 4.6◦ 1
(0◦, 90◦) 5.7◦ 0
(0◦, 180◦) 6.7◦ 0

Five runs were done for each starting pose. Communication failures indicates the number of times a
Scout failed to receive commands and move during an experiment.
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Table VIII Dispersion errors with two Scouts from a given pose

Start pose: (0◦, 0◦) Start pose: (0◦, 90◦) Start pose: (0◦, 180◦)

Scout 1 Scout 2 Scout 1 Scout 2 Scout 1 Scout 2

0◦ No response 8◦
+1◦

−6◦ 3◦

−3◦
−8◦

−3◦
+5◦

+5◦
−5◦

+4◦
−10◦

−2◦
+15◦

−3◦ 2◦

+2◦
−7◦

−4◦
−10◦

+8◦
−10◦

0◦
+9◦

−2◦
+7◦

−20◦
+5◦

Avg. deviation: 4.6◦ Avg. deviation: 5.7◦ Avg. deviation: 6.7◦

more and less quickly over distance, so in our future work, we will implement these
differing pheromone persistence levels with our miniature robot team. Following
the simulation runs which used localization parameters of l = 1 and l = 2 with four
robots started from various initial positions, and allowing for differing dispersal times,
and differing robot speeds, the standard deviations of the distances between each
robot’s two nearest neighbors were computed. In simulation, the higher localization
parameter generally lead to better approximation to perfect circular sweep coverage.
It is not clear how noise in the system will affect these simulation results, so we plan to
implement future test runs on the robot team with different localization parameters.

In this work, the Scout’s location and orientation are calculated from vision-
analysis of the position of the colored markers, then the pheromones are modeled
virtually. While the color-tracking analysis has proved quite accurate using the ACTS
software, improved results might be achieved by applying a Kalman filter. The Scout’s
color markers could be supplemented and/or replaced by colored wheels, possibly
yielding an increase in tracking accuracy because the markers would be larger and
farther apart. It would also allow observers on the ground to better track Scouts from
the side. However, in place of the color-tracking implementation, the implementation
of virtual pheromones by using a short-range transceiver should be considered even
though it would require additional on-board power as it would offer the following
additional benefits:

• Transceiver-implemented virtual pheromones would operate anywhere the
Scouts were operating, so no overhead camera or Ranger-mounted camera would
need to be present.

Figure 6 Scout poses of a (0◦, 0◦), b (0◦, 90◦), and c (0◦, 180◦).
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Figure 7 Example dispersion runs with Scout robots (axes in pixels).

• When a Scout power supply becomes exhausted, the color-markers still appear
on the Scout, but a transceiver would stop broadcasting. Thus, a Scout that is
‘down’ would disappear and other Scouts would move in to cover the area.

• Obstacles that block a Scout’s view would likely also block the transceiver signal,
so coverage of areas with short obstacles would likely be improved.



320 J Intell Robot Syst (2006) 45: 307–321

• In addition to dispersion (and grouping), virtual pheromones implemented with
a transceiver could be employed in additional applications such as finding a
shortest path though a maze-like site.

• With more processing power available on-board and transceiver-implemented
virtual pheromones, the decision-making of the next generation of Scout robots
can be much more distributed, including dispersal without use of the communi-
cations channel.

Future work will expand on the Scout’s autonomous capabilities, which will
include more advanced sensor interpretation and spatial reasoning techniques. The
software control architecture is also being expanded to allow more types of hardware
resources, such as larger robots, to be controlled.

5. Conclusions

The approach of using repellent virtual pheromones as described in this paper offers
a fairly robust approach to the dispersion of a robotic team. It needs no prior map of
the area and requires no localization, yet it leads to a reasonable implementation of a
dispersion for broadcast coverage, even when noise is present in the system. Though
improvements can certainly be made in future implementations, this technique can
be implemented as is for the dispersion of robots.
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