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Abstract 

For most of the existing commercial driver assistance systems the use of a single 

environmental sensor and a tracking model tied to the characteristics of this sensor is 

sufficient. When using a multi-sensor fusion approach with heterogeneous sensors the 

information available for tracking depends on the sensors detecting the object. This paper 

describes an approach where multiple models are used for tracking moving objects. The best 

model for tracking is chosen based on the available sensor information. The architecture of 

the tracking system along with the tracking models and algorithm for model selection are 

presented. The design of the architecture and algorithms allows an extension of the system 

with new sensors and tracking models without changing existing software. The approach was 

implemented and successfully used in Tartan Racing’s autonomous vehicle for the Urban 

Grand Challenge. The advantages of the multisensor approach are explained and practical 

results of a representative scenario are presented. 

  

Introduction 

Most of the existing commercial driver assistance systems with environmental perception are 

designed for longitudinal traffic in well structured environments (for example Adaptive Cruise 

Control [1]). Thus the use of a single environmental sensor and a tracking model tied to the 

characteristics of this sensor is sufficient. New driver assistance systems will use a multi-

sensor fusion approach to process sensor data [2]. Data generated from different sensor 

technologies will be combined, so that depending on the number and type of sensors 

detecting an object the quality of the data will change. Even when only a single sensor is 

used, the quality of the data can change. As an example, the shape information extracted 

from laser scanner data will change with the distance to a detected object. 



This article describes an adaptive model switching approach to address this phenomenon. It 

has been successfully implemented in Tartan Racing’s autonomous robot [3][4] for the Urban 

Challenge 2007 [5]. Data from thirteen environmental sensors with different detection modes 

has been fused into a model of composite object hypotheses. The data was used in a variety 

of applications including distance keeping, intersection handling and parking. The 

environment consisted of an urban road network with intersections, sharp curves and free 

traffic in open parking lots.  

The first section of this paper describes the sensors used for object tracking on Tartan 

Racing’s autonomous vehicle. The advantages of the multisensor approach with different 

sensor technologies will be described along with the differences in features and data quality 

obtained from the different sensors. The next section explains the architecture of the tracking 

system. The implemented system on the robot uses two distinct models for object tracking, 

which are explained next. The selection of these models depends on the information 

available from each sensor. A voting scheme where individual sensors vote on the best 

tracking model is used to determine the model that best fits the available data. The algorithm 

to determine the best model is also presented. The paper concludes with results in a 

representative scenario. 

 

Multisensor Setup for Object Tracking 
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Fig. 1: Environment sensor setup used for object tracking on Tartan Racing’s autonomous 

robot. 

Figure 1 shows the sensor configuration that is used on Tartan Racing’s autonomous 

vehicle. Table 1 summarizes the characteristics of the thirteen sensors (for a general 

overview see for example [5]). 

The radar sensors enable the robot to detect objects reliably at near and far distances. The 

units mounted on the pan heads are used to detect cross traffic at intersections early enough 



to merge safely with traffic moving at speeds up to 30mph. The radars are able to measure 

Doppler shift which allows direct measure of velocity and gives a higher precision and lower 

latency than an estimate based on distance measurements as it is required with the laser 

sensors. This direct velocity measurement can also be used to distinguish moving and static 

objects more robustly than with sensors measuring distances only. In the configuration used 

on the robot the information extracted from the sensors raw data consisted of 2D coordinates 

of the detection center and the velocity in radial sensor direction. The accuracy of the 

measured position allows an association of the detected vehicle to the lane it travels in up to 

the detection range of 200m. 

The planar scanning laser sensors provide information about the planar (2D) shape and 

orientation of a vehicle in the near range (see e.g. [6][9]). This information can be used to 

predict the movement of a tracked vehicle including an estimated yaw angle and rate which 

is not possible with the measurements from the radars alone (see the next section for details) 

The information is precise enough to calculate a path for the autonomous robot close to other 

moving traffic while keeping a reasonable safety distance (e.g. oncoming traffic on roads or 

free traffic in an open parking lot). Due to the fixed angular resolution of the scanning lasers, 

the shape information at long distances is not good enough to perform yaw estimation with 

the required accuracy. As with the radar sensors the data however is accurate enough to 

associate the information to lanes on the road. 

The 3D laser scanner is the only sensor on the robot that provides information about the 

height in addition to the planar shape of objects. In the configuration used on the vehicle the 

effective detection range of the sensor is not sufficient for autonomous driving with merging 

and passing maneuvers in 30mph traffic. Furthermore, due to the mounting position the 

sensor cannot acquire measurements in various occluded regions close to the vehicle 

(especially the rear). Analogous to the planar laser scanners the resolution of the data points 

decreases with distance and direct measurement of velocities is not possible.  

From this description, it is clear that no one of the sensors alone was sufficient to provide 

enough information to track objects around the vehicle. By fusing the fields of view of each of 

the different sensors, complete sensor coverage around the vehicle could be achieved and 

the described advantages of the different sensor technologies could be combined. Moreover 

redundancy makes the system more robust to possible sensor failures and artefacts of single 

sensors. 



Table 1: Sensor Characteristics and features extracted from sensor raw data. 

Sensor Sensor Type Max. Range*  

 

Vertical 

Angle 

Horizontal 

Angle 

 

Features used for tracking 

 

Continental 

ARS300 

Scanning Radar 

(near/far) 

60/200m 4.3° 56/18 2D coordinates of detection/velocity 

Continental 

ISF172 

Fixed Beam Laser 150m 4° 14° 2D coordinates of detection 

SICK  

LMS291 

Scanning Laser,  

1 level 

80 m 0.25° 180° Edge Target/2D coordinates of detection 

IBEO  

AlascaXT 

Scanning Laser,  

4 level 

200m 3.2° 240° Edge Target/2D coordinates of detection 

Velodyne 

HDL-64E 

Scanning Laser,  

64 beams 

120m 26.8° 360° Edge Target/2D coordinates, height 

information target for validation 

*according to specification 

Tracking Architecture 

Each sensor produces a different kind, amount, and quality of information. To handle this 

disparity, different tracking modes are used. Depending on the available information the 

tracking model is switched to the model with the highest precision currently supported by 

sensor data. For the applications scenarios of the Urban Challenge two tracking models were 

sufficient: a box model and a point model (see Figure 2). 
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Fig. 2: Tracking models: box model with fixed shape (left) and point model without shape 

information (right). 

The box model uses a fixed length and width to represent the shape of a vehicle whereas the 

point model has no shape information. For the box model the velocity and acceleration vector 

is always parallel to the longer edge. The orientation is described by a yaw angle and a yaw 

rate. The state propagation equations couple the x and y coordinates via the yaw angle and 

yaw rate (simple bicycle model, see e.g. [6]). The point model is described by 2 coordinates 

in the 2D plane and the corresponding velocities and accelerations. A constant acceleration 

model is used for state propagation (see e.g. [7]). The noise parameters adapt with the 



length and direction of the velocity vector. This again couples the x and y coordinates and - 

similar to the bicycle model – does not constrain the model to a predefined direction defined 

by the coordinate system. This way the model is usable for tracking vehicles driving in an 

arbitrary and previously unknown direction. 
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Fig 3: Simplified architecture of the tracking system. 

Figure 3 shows a simplified architecture of the tracking system (see also [8]). It is divided into 

two layers, the Sensor Layer and the Fusion Layer. For each sensor type (e.g. radar, 

scanning laser, etc.) a specialized sensor layer is implemented. For each sensor an instance 

of its particular sensor layer runs on the system. This way all sensor type specific operations 

are encapsulated in specialized modules. New sensor types can be added without changing 

existing sensor modules and the implementation of the fusion layer. This simplifies the 

extensibility of the system. 

At the fusion layer all general functions for object tracking are performed. The most important 

are state estimation, object management and model selection (see Figure 3 and [8]). State 

estimation is done with a probabilistic estimator using a prediction and an update step (see 

e.g. [8]). The current set of best object hypothesis is provided to the applications (behavior 

and planning algorithms) and is also fed back to the sensor layer. To be compatible with this 

decomposition the tracking algorithm in the fusion layer must have the following properties: 

• be independent of sensor types. 

• be independent of the number of sensors used in the tracking system. 

• be independent of the number of tracking models used in the tracking system. 

By maintaining these requirements, the independence of the fusion layer can be guaranteed 

and thus the tracking system can be easily extended to new sensors. Details of the fusion 

layer are explained in the following section. 



All information about how states are propagated is encapsulated in the fusion layer, the state 

propagation equations are hidden to the sensor layer. Each time a sensor has new raw data 

it requests a prediction of the current best set of object hypothesis at the current 

measurement time and associates the raw data to these predicted object hypothesis (see 

also [8]). For each extracted feature a set of possible interpretations is created by using a 

heuristic which takes the sensor specific characteristics of the raw data into account. 

Examples for these characteristics are the resolution of the sensor, the noise level of 

distance measurements, the maximum angle under which an object is detectable or a special 

treatment of the boundaries of the field of view. 
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Fig 4: Left: Possible Box Model interpretations of Edge Targets. Right: Snapshots of a 

vehicle driving perpendicular to the robot through an intersection. Edge Targets: 

Laser scanner features; Diamonds: Radar features. Artefacts are mainly caused by 

ground detections due to pitch of the robot and shape of the ground (Displayed 

features are not synchronized - up to 100ms difference per snap shot). 

Figure 4 shows Edge Targets which are extracted from the raw data of the scanning lasers 

(a heuristic for the planar lasers is described in [9]). Edge target features describe objects 

which either have two edges with a near 90° angle or objects where only one edge is visible. 

Figure 4 (left) shows possible interpretations of edge targets as a box model. As there is a 

great deal of uncertainty in the edge target features (see Fig 4, right) all possible 

interpretations are generated. If the data is not sufficient to be interpreted as a box model 

(e.g. at larger distances or because the raw data does not represent a vehicle) a point object 

interpretation is used instead. 



Based on a sensor specific heuristic a measure for the compatibility of the generated 

interpretations with the associated prediction is computed and it is checked if any of the 

interpretations differs significantly from the current tracking model used on fusion layer. 

If this is not the case then the best interpretation will be used to generate an observation. 

The observation holds all information necessary for the update step of the estimation at the 

fusion layer. It encapsulates the measurement equations and the information about 

measurement noise. Analogous to the state propagation encapsulated in the fusion layer, all 

of the observation information is encapsulated in the sensor layer. Thus the algorithm which 

updates the state estimate at the fusion layer does not need to interpret the data from sensor 

layer. This makes the fusion layer independent of the sensors modules implemented in the 

system. 

If an interpretation differs significantly from the prediction provided by the fusion layer the 

sensor initializes a new object hypothesis. Each of these new hypotheses can potentially 

replace the current model hypothesis used on fusion layer. The set of hypothesis is called 

proposal. Proposals can be provided in addition to an observation or – if there is no 

interpretation compatible with the current best object hypothesis – without an observation. In 

this case the associated data is only called a detection to reflect the fact that the sensor 

detected the object, but cannot provide any meaningful information for the state estimation. 

For features which cannot be associated to any object hypothesis a sensor module provides 

a set of unassociated proposals per extracted feature with an ordinal ordering of the quality 

of the proposals. 

In the fusion layer the best tracking model is selected based on the proposals provided from 

the different sensors and any other information available. The implementation used during 

the Urban Challenge uses information about road shape to bias the selection of the best 

proposal on roads. In parking lots the best proposal according to the ordinal ordering is 

selected. 

 

Voting Algorithm for Model Selection 

The algorithm to select the best tracking model only depends on the proposals and 

observations from sensors which currently detect or observe a given object. A sensor counts 

as supporting a model if by using only observations from this particular sensor the model is 

observable. With the sensor configuration described in the first section the laser scanners 

(planar and 3D) support both, the box and the point model, the radar and fixed beam laser 

sensors can support only the point model. 



A model counts as currently supported by a sensor if the sensor observes it directly or 

proposes the model as an alternative. To make the algorithm less sensitive to single false 

alarms of single sensors a minimum number of consecutive cycles with proposals for the 

specific model type can be defined before the proposal of a particular sensor is actually 

counted. 

A sensor counts as proposing a model if it proposes this model as an alternative to the 

current model in use in the fusion layer. The model may be different in either the state 

estimation (e.g. wrong yaw angle in the vehicle model for example); or it may be a different 

model, if either the sensor cannot support the current model (e.g. a radar sensor and box 

model) or it does not support the current model based on the internally computed quality 

measure for the interpretation (e.g. a laser sensor and box model: detected vehicle in a 

distance where the yaw estimation is not meaningful anymore).  

Finally a preferential ranking of the different models has to be defined. In the current 

implementation the box model is the preferred model above the point model. This order may 

change with the addition of new models however the algorithm itself does not need to 

change. The following pseudo code describes the decision algorithm: 

 

compute for each possible model relSupport=currentSupport/numberOfSupportingSensors 

If for all possible models relSupport<minRelSupport 

 do nothing (no decision is possible, keep the current best model) 

else 

 bestModel is the model with highest preference && relSupport>=minRelSupport 

 

if bestModel==currentModel 

 if numberOfProposingSensors>floor(numberOfSupportingSensors*thresholdReinit) 

  reinitialize model (model is OK but states need to be reinitialized) 

 else 

  do nothing (may be a false alarm) 

else 

 change model 

 

The first portion of the algorithm decides which model type has the highest support by the 

sensors. By varying the value minRelSupport the point at which models are switched can be 

adjusted. A higher value ensures that a switch to model with a higher accuracy will be 

performed only if there are enough sensors supporting it. In the Tartan Racing system the 

number of supporting sensors increases as the tracked vehicle gets closer to the robot. For 

example, at a range closer than 30m up to four sensors can support the box model, which 

helps to suppress artefacts as shown in Fig 4, right. 



The second part of the algorithm determines if the model needs to be reinitialized. Here 

again a minimum number of sensors is needed to support the request for a reinitialization. 

The floor function ensures that not all sensors need to agree to a reinitialization unless 

thresholdReinit is set to 1. 

Results 
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Fig. 5: Autonomous vehicle waiting for precedence. The model is switched from point to box 

once the vehicle is detected with the scanning laser sensors. 

Figure 5 shows a vehicle driving up to an intersection with the autonomous vehicle waiting 

for precedence. At a distance of more than 150m only the pointed radar sensor detects the 

approaching vehicle – the point model is used for tracking. The adaptation of the noise with 

respect to the velocity vector stabilizes velocity estimation in the direction of travel. As soon 

as the vehicle is close enough for the laser sensors to generate box model proposals the 

tracking model is changed. The radar sensors still provide accurate velocity measurements 

which allow a precise estimation of the time gap for merging - the position measurements 

however are represented only with a very low weight in the observation. Due to the 

information provided by the laser sensors the yaw angle of the object can now be estimated. 

In open parking lots the sensor configuration can generate a box model with sufficient 

accuracy to predict the movement of a tracked vehicle for up to three seconds based on 

estimated states only. This makes the robot able to drive in an open parking lot together with 

other vehicles – human or robot driven.  

 

Conclusions 

When fusing data from heterogeneous sensors for tracking moving objects a single tracking 

model cannot reflect the different levels of information provided by the sensors. Depending 



on the resolution of a sensor for example it is possible to estimate a yaw angle of a tracked 

vehicle (scanning laser) or not (fixed beam laser). A way to make use of the different sensor 

capabilities is to use different tracking models which are switched according to the available 

information. In this paper an architecture has been presented which incorporates this 

approach. The architecture encapsulates all sensor specific algorithms in a Sensor Layer 

and sensor independent algorithms in a Fusion Layer. This makes it possible to add new 

sensors to the system without changing existing code. It has been shown that two tracking 

models are sufficient to track vehicles in an urban environment as specified for the Urban 

Challenge. An algorithm which selects the tracking model has been presented. The selection 

is based on votes from sensors detecting the object and is independent of the underlying 

sensors and tracking models. The practical realization showed that the approach works 

robustly for a combination of radar and laser sensors (fixed beam and scanning). 
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