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Summary. To explore the effects of different simple communications strategies on
performance of robot teams, we have conducted a set of foraging experiments using
real robots (the Minnesota Distributed Autonomous Robotic Team). Our experi-
mental results show that more complex communication strategies do not necessarily
improve task completion times, but tend to reduce variance in performance.

1 Introduction

Designing a distributed robotic system using simple units is an attractive en-
gineering solution for many reasons [2]. Each robot in the swarm uses simple
local rules to decide its actions without needing any command from a cen-
tral controller or from any other robot. Obvious advantages to this approach
are robustness to individual failure, ability to scale with minimal tractability
issues, low unit complexity, and decreased costs.

In this study, we are interested in determining what level of improvement in
task performance we can expect by adding simple communications capabilities
to the robots in the swarm. In order to explore this question, we built a
group of simple robots, the Minnesota Distributed Autonomous Robot Team
(MinDART) shown in Figure 1, to perform a foraging task and we enhanced
them with communication capabilities. We conducted a series of experiments
with these robots and compared their performance when using different simple
communication strategies.

Although many tasks can serve as a testbed, we chose foraging, which is
well studied, so that solutions and results can be compared more easily. In
our version of the task, robots locate a target in an enclosed arena, pick up
the target, and drop it off at a designated home base. The arena contains
some obstacles, and the distribution of the targets varies. The performance
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Fig. 1. The Minnesota Distributed Autonomous Robotics Team (MinDART). The
MinDART robots searched for the infrared emitting targets in a search and retrieval
task. Landmarks were used for homing and localization.

criterion we selected is the time to complete the task, i.e. the time to collect
the entire set of targets and return them to home.

All our experiments use physical robots, as opposed to simulated robots.
As eloquently explained in [6], we believe that a rigorous study of swarm
intelligence warrants physical robots, as opposed to simulated robots.

The simplest control strategy for foraging is random walk. We use reactive
behaviors to avoid obstacles and random direction changes at random intervals
to increase the probability of complete coverage. This strategy is an attractive
choice for simple robotic hardware because it is easy to program and requires
little sensor bandwidth.

We analyzed random walk versus control strategies that use communica-
tion. The communication methods we chose are forms of indirect communica-
tion based on cues from the environment (this is called stigmergy in the biology
literature). We studied two types of communication (reflexive communication
and deliberate communication) and studied how the duration of deliberate
communication (10, 20, and 30 seconds) affected the time to complete the
task. Our experimental results show that for simple robots such as the Min-
DART, deliberative strategies help in decreasing the variance of the team’s
performance. However, this decrease in variability does not correspond to a
significant decrease in the mean time to solve the task. Instead of spending
time wandering randomly, the robots spend time recruiting other robots.

2 MinDART Hardware and Software

Each MinDART robot is constructed out of LEGO Technic blocks. The robot
is 29 cm long by 24 cm wide by 37 cm tall and has a dual-treaded skid-steer
chassis that allows the robot to turn in place and translate at a speed of
0.1693 m/s. The gripper is an articulated cargo bay that grasps and transports
targets. Bumpers are used for obstacle avoidance. The robot’s infrared sensors
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can detect the target IR beacons at a range of approximately 70 cm. A light-
bulb beacon serves as binary form of communication among the robots. To
detect this beacon, and to identify landmarks for homing, a CMUCam [13] is
mounted on top of a servo-controlled turret. The camera processes images at
2-3 frames/second. The robot is controlled by a Handyboard.Power is provided
to the camera and Handyboard by two 9.6V NiCad battery packs.

The MinDART’s control software consists of a finite state machine. Each
state in the controller solves one subtask in the robot’s overall task. There
are three subtasks comprising the search and retrieval task, which are find a
target, grab a target, and return a target to the home base. In the initial state,
FindTarget, a robot searches for targets, or heads toward an activated light-
bulb beacon. Once a target is detected with the robot’s infrared sensors, the
control system switches to the GrabTarget state which is responsible for
maneuvering the robot such that the target fits into the gripper. If the robot
successfully grabs the target, the control system switches to ReturnTarget,
which returns the robot to the drop-off location.

3 Communication Experiments

Figure 2 shows a view of the experimental setup. The area was 7 m x 8m
and contained uniformly distributed obstacles. The targets were distributed
in a single non-uniform distribution in the corner of the environment furthest
from the drop-off location. All experiments were run with four robots. Robots
communicated by turning on their light-bulb beacons. Beacons could be seen
at a maximum range of 2.9 m.

The goal of communication is to reduce the target search time by attract-
ing robots to the area of a sensed target. The experiments were designed to
test the robot’s abilities to lead each other to a single clump of targets. The
communication method chosen was an attracting light-bulb beacon, which
would direct the other robots toward the targets. Communication varied by
intent and duration as follows:

• No Communication. This was used as a baseline experiment.
• Reflexive Communication. A robot turned on its light-bulb beacon

while trying to pick up a target (i.e. while in the GrabTarget state).
Once the robot grabbed the target, the beacon was deactivated. We con-
sider this a statement of action, not a request for help. This strategy would
be of no use in an environment with a uniform distribution of targets, but
we hypothesized it would help when targets are clumped and harder to
find by random walk.

• Deliberative Communication. A robot turned on its light-bulb beacon
when a target was sensed, but the robot was unable to pick it up. This
form of communication was used if a robot encountered a target while on
its way to the home base to drop off one that it had in its gripper. The
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Fig. 2. Diagrams of the 7m x 8m experimental environment showing obstacles,
initial placement of targets, and initial starting point for the robots. All experiments
contained nine targets and eight obstacles. The obstacles were relatively low and did
not block a robot’s view of the landmarks or of each other. However, they did block
a robot’s view of the targets. The drop-off area is the same as the robot starting
point.

robot would stay motionless for a fixed amount of time as a deliberate
request for assistance. We tested three fixed durations: 10 s, 20 s, and 30 s.

We hypothesized that any form of communication would provide a per-
formance enhancement, due to the reduced time spent in random search, and
that some form of communication would provide better results than no com-
munication. Similar findings are reported in the simulation work of [1].

We also predicted that deliberative communication would provide the most
benefit and that there would be a peak or plateau in the duration, as seen
in the simulation work of Sugawara [19]. In other words, we predicted that
there would be an ideal communication duration that would maximize per-
formance, and any duration longer than that would not enhance performance
any further. This is because the longer the beacon is left on, the better chance
the other robots would see it. However, deliberative communication requires
a robot to stay stationary while recruiting others. There is a tradeoff between
this delay and the time spent doing random search.

Since one of the goals of the experiments was to measure the effect of
the amount of time the light-bulb beacons were on, and since in the reflexive
communication experiments the beacons were on for different amounts of time,
we recorded the light-on time for each communication occurrence. The average
light-on time was approximately 16 s with a standard deviation of 11.6 s, but
the distribution is not Gaussian, as seen in Figure 3. Instead, it clusters around
5 and 10 s (the mode of the distribution is 5 s). We will see later how this is
correlated with the variance in the experimental results.
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Fig. 3. Histogram of the times the light-bulb beacon was on, observed in the reflexive
communication experiments. The majority was in the 5 to 10s range. This can be
compared to the deliberative communication experiments, where beacon-on times
were fixed.

For each of the experiments, we recorded the time a robot returned a
target to the drop-off zone. The results were averaged over five runs. Each
experiment was run until all nine targets were retrieved. We compared the
times between the dropping off of the first and eighth target, to discount the
times in the experiment when communication had little effect. Figure 4 shows
the means and standard deviations of these times.

Means with standard deviation Standard deviations only

(
√

variance) errorbars

Fig. 4. Means and standard deviations of the times to complete the task for each
of the communication strategies. The labels on the x axis stand for the different
communication experiments. None=none, Ref.=reflexive, Del.10=10 s deliberative,
Del.20=20 s deliberative, Del.30=30 s deliberative.

The left graphs of Figure 4 and of Figure 5 plot the means and standard
deviations of task completion and of search times, respectively, for the com-
munication experiments. The graphs reflect a slight performance benefit from
the use of all forms of communication, but, surprisingly, nothing statistically
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Fig. 5. Means and standard deviations of the times the robots took to retrieve a
new target after dropping one off (i.e. target search time) for each of the commu-
nication strategies. The labels on the x axis stand for the different communication
experiments. None=none, Ref.=reflexive, Del.10=10 s deliberative, Del.20=20 s de-
liberative, Del.30=30 s deliberative.

significant. However, the variance of both show an obvious trend, that can be
seen more clearly from the right-hand graphs of Figures 4 and 5. Although f
tests show no statistical significance of the difference between the variances
at the 95% confidence interval, the variance of the 20 second communica-
tion trials were very close to being significant (one-tailed, two-sampled f test
with p=0.0682 and p=0.0511, for time to completion and target search times,
respectively).

The beacon-on times recorded in the reflexive communication experiments
(shown earlier in Figure 3) suggest that the correlation between the beacon-on
times and the variance in completing the task cannot be explained simply by
the duration of the beacon-on times.

Robot-to-robot interference and the specifics of how the robots operate
are other important factors. The CMUCam turrets can rotate 360◦ in 5 sec-
onds, but it may take several rotations to detect a beacon. The probability
of detection decreases with distance and becomes zero at 2.9 m. A robot can
rotate 180◦ in 5 seconds and can translate at a maximum of 0.17 m/s.

Using these ranges and approximating the probabilities for the time to find
a beacon, to rotate, and to home in, we calculated the mean interference time
and the mean travel time (i.e. the average time a homing robot traveled toward
a communicating robot once it was oriented) for the deliberative experiments:

10 seconds 20 seconds 30 seconds
Mean Interference Time 0.9971 5.8964 13.8634
Mean Travel Time 2.8500 11.7006 21.6406
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Short communication durations (times less than 5 s) do not give enough
time to the robots to see the beacon and change their heading to travel towards
it. Longer communication times increase the probability of robot interference
(mean interference time doubles from 20 s to 30 s). Travel time also increases
with long communication.

4 Discussion

To explain the results, we have analyzed some of the failure points during
communication. The probability of successful communication (i.e. the ability
to see the beacon) is inversely proportional to distance. Even when two robots
are in close proximity, successful communication depends upon their relative
headings. If the homing robot is facing away from the communicating robot it
may not be able to orient itself before the beacon is turned off. If a robot does
successfully home in on a communicating robot, the target may be occluded.
If the two robots make contact, the homing robot may turn away from the
target as it executes obstacle avoidance. Finally, a common source of noise is
inter-robot interferences. This becomes particularly troublesome when robots
are drawn to the same area by some attractor, such as a beacon.

We could claim that these points of failure for communication are imple-
mentation details that can be addressed with more sophisticated hardware
or better engineering, but discounting implementation details raises an im-
portant issue. These implementation details are precisely why we think real
robots are necessary for this type of analysis. It is too easy to discount or
underestimate the effects of even simple implementations on real hardware.
For example, in [1] communication was shown to improve performance, but
nearly all of the experiments were done in simulation where the effects of
specific actions on the performance of the system (such as cooperative carry-
ing or consuming of a resource) can be abstracted away. The details involved
in physically implementing a system which can carry heavy objects or can
consume liquid from a spill may affect the performance of the team in ways
that those results did not illustrate. Considerable engineering effort may be
necessary before the robots would be able to effectively achieve their tasks at
the rates reported in this work.

As a point of comparison, consider a MinDART robot that executes a
collection of behaviors to align itself to a target when in the GrabTarget
state. The time that it takes a robot to pick up a target is heavily dependent
on the interaction between the robot and its environment. To better quantify
this, the times the beacons were turned on in the reflexive communication
experiments are the same as the times the robots spent in the GrabTarget
state. These times (see Figure 3) were quite variable. This illustrates the
complexity that can arise from a simple operation implemented on real robots.

We believe our findings are validated by work done by others in simula-
tion, particularly by Balch and Arkin [1] mentioned above. They concluded
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that simple communication often provides the best performing robots, but
sometimes no communication performs just as well. We believe that once you
carry robotics into the real world, some improvements in performance found
in simulation get reduced by the noise and errors of implementation.

5 Related Work

Most research with multiple robots has focused on various forms of collabo-
rative work [3]. While collaboration may be essential for some tasks, we are
interested in studying tasks that can be done by a single robot, but where
using multiple robots can potentially increase performance by decreasing the
time to complete the task and/or by increasing the reliability. Sample tasks
include placing a sensor network [16], cleaning up trash [12], pushing boxes [9],
or detecting odors [5].

Foraging is a widely used testbed for distributed systems, but there are
differences in the way the task is defined. In most studies the goal is to collect
a fixed number of objects (roughly half) [4], in other cases objects continue to
appear probabilistically and the duration of each experiment is fixed [8]. In our
experiments the task is completed when all the objects have been collected,
which makes the task more difficult since it is harder for the robots to find
targets when they are very sparse. In our previous work we studied the effect of
the number of robots [14] and of localization on performance [15]. In addition
to these experimental studies, predictive models of foraging behaviors [11] and
of robot interference during foraging [10] have been proposed.

There have been a handful of studies to evaluate the efficacy of commu-
nication strategies applied to the foraging task. Our work on communication
strategies has been inspired mostly by the theoretical model proposed by Sug-
awara [18, 19] and by the simulation work of Balch and Arkin [1]. Sugawara’s
model accounts for the effects of indirect communication in foraging tasks.
He performed simulation studies and some limited experiments with physi-
cal robots to support his model [19]. An interesting aspect of the model is
that it predicts that the duration of the communication affects performance,
and that there is a critical duration at which the performance is maximized,
below and beyond which team performance deteriorates. Our communication
experiments were designed to test this specific aspect of the model.

The study by Balch and Arkin [1], which evaluates the effects of var-
ious communication strategies on three different tasks, including foraging,
was mostly conducted in simulation. The study predicts that communica-
tion improves performance by reducing the time spent wandering around.
Our communication experiments were designed to verify this improvement
and to quantify it. It is reasonable to assume that communication will as-
sist in foraging, since it is a strategy that has evolved in nature. It is widely
known that bees “dance” to communicate the direction of pollen sources [17]
and ants communicate the location of prey with pheromone trails [7]. To
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our knowledge, biologically-inspired communication strategies for foraging on
small scale robots have yet to provide performance improvements as predicted
by the above mentioned work.

6 Conclusions and Future Work

We studied the effects of communication on a robotic team doing foraging.
We compared this against a baseline of a random-walk search strategy.

We hypothesized that communication would decrease the time the robots
spent randomly searching their environment and would improve overall perfor-
mance, but we did not find a statistically significant improvement compared
to the baseline. Instead, what we found was a decrease in the variance of the
task completion times. We attribute the decrease in variance to the reduction
of random search for targets. With communication capabilities, robots have
to randomly wander into the communication range of another robot, but are
then drawn directly to targets when attracted by a communicating beacon.
Analysis of the average homing distances and interference times supports our
conclusion that a 20 s communication duration represents a minimal point
of variance for our experimental setup. Durations beyond this increase the
probability of robot interference which negatively impacts performance.

For future work, we will explore how robots might dynamically adapt to
their environment and tune their communication durations to optimize the
team’s overall performance. This learning capability would require upgrades
in the processing and communication systems of the robots. Such upgrades
would facilitate a robot’s ability to share more information such as intentions,
therefore teams could collaborate at a higher level.
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