
Visual Servoing of a Miniature Robot

Toward a Marked Target ∗

Patrick Rößler, Sascha A. Stoeter, Paul E. Rybski, Maria Gini, Nikolaos Papanikolopoulos
Center for Distributed Robotics, Department of Computer Science and Engineering

University of Minnesota, Minneapolis, U.S.A.
{roessler, stoeter, rybski, gini, npapas}@cs.umn.edu

Abstract. The paper describes a system that servos a miniature robot toward a marked
target based on visual information from the robot’s own camera. This task is divided into
two subtasks: recognition of the target and driving toward it. The system deals with the
problems introduced by noisy camera images and unstructured, non-static backgrounds.
A description of the control software is given and experimental results are discussed.

1 Introduction

Team-based behaviors are an important part of a
distributed robotic system. Cooperating robots can
tackle tasks that are impossible to solve for a sin-
gle robot. In this work, miniature robots called
Scouts [5], are used. A Scout (Fig. 3) is capable
of rolling with its wheels and jumping small heights
with a spring foot mechanism.

To accomplish cooperating tasks, a Scout must be
able to find other team members or any other previ-
ously known object of interest. As the Scouts are
small and receive their energy from batteries, the
choice of sensors for this task is limited. A CMOS
cameras is an ideal sensor for a Scout: It is both small
and economic in power consumption, and it can be
used for visual servoing tasks (e.g., [2]).

In this work, we demonstrate that a Scout is ca-
pable of detecting a known static targets, another
Scout, with its camera. This task is non-trivial be-
cause of the Scouts’ size and their transparent shells.
This structure makes it hard to detect the robot in
realistic environments whose backgrounds are typi-
cally non-static. Worse yet, the camera’s images are
extremely noisy. A single marker is attached to the
target Scout to simplify detection. The marker is a
white square, 3.5 cm on a side, with a black circle of
2 cm in diameter in the middle. The small size of
the Scout does not allow for attaching several mark-
ers whose positions could be used to estimate the
target’s relative location to the camera.

2 The System

The proposed method was integrated into the exist-
ing distributed control architecture [7]. This archi-
tecture has four main subsystems. The User Inter-
face gives the user the possibility to interact with
∗This material is based upon work supported by the

Defense Advanced Research Projects Agency, Microsystems
Technology Office (Distributed Robotics), ARPA Order No.
G155, Program Code No. 8H20, issued by DARPA/CMD un-
der Contract #MDA972-98-C-0008.

the system. The Mission Control hosts prioritized
behaviors which model the solution for a mission.
The Resource Pool manages the resource controllers
that model all physical and logical resources. These
subsystems are tied together by the Backbone.

Two main components had to be added: the be-
havior ServoToTargetB and the resource controller
TargetFindRC (Fig. 1). While the behavior controls
the servoing of the Scout and estimates the posi-
tion of the target based on the information given by
the resource controller, all image processing is done
in TargetFindRC. The video frames are grabbed and
processed. As those tasks are part of a distributed
environment, it is possible that they run on differ-
ent computers that may be connected through slow
connections. Therefore, it is important to keep the
communication overhead of the system low. Tar-
getFindRC only transmits a list containing the likely
positions of the target to ServoToTargetB.

2.1 The Resource Controller

TargetFindRC grabs incoming video frames from the
Scout. After these frames are preprocessed, it tries
to find likely positions of the target in the image.
To reduce the influence of noise and the complexity
of the search for the marker in the image, a two-
step algorithm is used. The first step locates regions
that have a high evidence of containing a Scout. The
second step evaluates these regions to determine the
actual position and size of the target.

Commands

ARC

RC
Scout 36

Video Frequency
RC

RC
Radio

RC
TargetFindRCMission Control 

ServoToTargetB

Behavior

Video Receiver &
Frame Grabber

Scout Command Radio

Resource Pool RF Hardware

Video

Figure 1: Overview of the system.



2.1.1 Preprocessing

The images acquired from the Scout’s camera are
typically very noisy and have low contrast. In ad-
dition, interference of the electromagnetic motors
with the transmitter affects the image quality sig-
nificantly. From time to time, the connection is lost
completely. These problems have to be addressed
in the preprocessing step. Frames with a lost con-
nection or a very weak signal are identified. These
frames are not processed as they would have a nega-
tive impact on the performance of the system.

The image is smoothed to lower the influence of
noise. As the marker may be very small, a filter that
is too strong might smoothen the image so much that
the marker cannot be found. Thus, a three-by-three
pixel arithmetic mean filter is used. Then, to improve
the contrast, a histogram equalization algorithm is
applied. This will simplify the task of detecting edges
especially in the region of the marker.

2.1.2 Binary Template Matching

A template matching algorithm is applied to find the
target in the image [3]. The template matches the
area of the original image with the highest cross-
correlation. First an edge operator is applied and
then the edge image is thresholded to obtain a bi-
nary image. The chosen edge operator is the three-
by-three Sobel operator [6] as it is relatively fast and
noise has little influence on it. A histogram of the
edge image is computed in order to obtain the thresh-
old. A threshold value is picked from the histogram
that is greater than a given fraction of all gray-values
in the image. In this case, a fraction of 95 % was em-
pirically chosen. This leaves only the most significant
edges in the image, while all others are deleted. The
edge directions are computed for use in later steps.

To obtain the template, a picture of the target
is taken in front of a uniformly colored background.
The area containing the target is cropped manually
and an edge image is created as described above.

Finding the best matching position of a gray-scale
template in a gray-scale image can be done by max-
imizing the cross-correlation Rft of the two images:

arg max
y

Rft(y) = arg max
y

∑
x

f(x+ y)t(x) (1)

where y is the displacement of the template in the
image, x is the position in the template, f(y) is the
intensity of the image at position y, and t(x) is the
intensity of the template at position x.

For binary images with f(y) ∈ {0, 1} and t(x) ∈
{0, 1}, this can be simplified to

arg max
y

Rft(y) = arg max
y

∑
{x|t(x)=1}

f(x+ y) (2)

enabling fast algorithms that only visit specific pix-
els set in both images. Though the complexity of
convolving the edge template with the binary im-
age is of the same order as before, it is considerably

faster as only approximately 5 % of the pixels in both
the image and the template have to be visited. Fur-
thermore, the multiplication and summation of the
gray-values of both images is simplified to counting
the number of matching pixels.

An additional acceleration is gained by running
this algorithm on down-scaled versions of the images.
The images can be scaled down by a factor of three
along both axes from their original size of 320× 240
pixels with no considerable loss of accuracy.

The estimated position of the target is relatively
invariant against the size of the template. Thus, only
four template sizes must be matched representing
distances of approximately 30 cm, 40 cm, 60 cm, and
120 cm (Fig. 2). The areas with a high correlation to
one of the templates are considered to be areas with
a high probability to contain the target with a size
of approximately the template size. These areas will
be examined further in step 2.

Figure 2: The largest and the smallest templates.

2.1.3 Circle Detection

In the second step, the circular marker is searched
for in the areas of high confidence found in step 1
(Fig. 3(a)). This task is also accomplished using the
edge information of the image. Given the design of
the marker, the edge has a high gradient value and
is clearly visible in the thresholded edge image. An
edge thinning algorithm is used on these areas to ob-
tain edges that are exactly one pixel wide. A Hough
Transform [4] is subsequently applied to find circles
in the thinned search windows. Ballard proposes to
incorporate the directional information of the edges
found previously to increase the accuracy of the com-
putation and to minimize the number of circles [1].

All search-windows are examined for three possi-
ble radii. Only circles with a minimum number of
fitting edge pixels are kept. The minimum number
is determined by a radius-dependent heuristic.

(a) Regions of interest (b) Detected circles

Figure 3: Results from the proposed algorithm.



The next task is to find the circle that matches the
marker on the Scout. The circular marker is the only
one or at least one of the best visible circles in the
search windows. Due to noise and roughly circular
obstacles in the background, usually more than one
circle with the same number of matching pixels are
found. Sometimes, the circle corresponding to the
marker is not among those with highest number of
matching pixels but it still has a high number. For
this reason, all circles with the two highest numbers
of fitting pixels are passed back to the behavior for
further processing. Fig. 3(b) shows these circles.

2.2 The Behavior

Servoing toward the target and keeping track of
its actual position is accomplished by the behavior
ServoToTargetB. The target’s position is extracted
from the list of likely positions. A time-dependent
confidence-driven algorithm is introduced to solve
this task. A simple fuzzy controller servos the Scout
toward the target while the estimation for the target
position is constantly updated.

2.2.1 Estimating the Target Position

The behavior has to estimate the actual target po-
sition from the list of likely positions computed by
the RC. If there actually is a target visible in the
processed frame, the possibility that the position of
the marker is among the detected circles is very high.
The other detected circles are induced by noise and
roughly circular objects in the background. If, how-
ever, the target is not visible in the image, only the
aforementioned false positives are found. They can
be filtered out easily as their positions in subsequent
frames is almost completely random.

A system of two confidence values is used. The
value confidence displays the confidence of the algo-
rithm to follow the same target in subsequent frames
whereas doubt measures the confidence that the tar-
get is not visible in the examined frame. The image
frame is divided into nine rectangular regions (three
rows and three columns) to determine the similarity
between two likely target positions. If the Scout did
not move between frames, the targets are assumed to
be similar if their centers are in the same region and
the difference of their circle radii is small. Easier to
meet criteria are used after the Scout has moved as
the Scouts’ movements are very inaccurate. Besides
the similarity of the radii, the circles only have to be
in the same row in the image. Fig. 4 demonstrates
the update process of the two confidence values.

2.2.2 Servoing

A simple fuzzy control mechanism is used for ser-
voing the Scout. The image is divided into three
columns that are used to specify the relative posi-
tion of the target and to select the appropriate drive
command. The three drive commands turnLeft, turn-
Right, and driveForward are used to approach the

decrease
confidence

doubt
increase 

doubt
increase circles

found

confidence
> 0

position
target
update

reset
confidence

match
similarity
criteria

increase 
confidence

drive robot

frame
process found

circles

decrease
confidence

increase 
doubt

yes

no

no

yes

yesno

no

yes

Figure 4: Scheme for updating the target position
and the confidence values.

target. The fourth command explore examines un-
known parts of the environment.

In order to approach the target, confidence has to
exceed a threshold. If the target is located in one of
the outer regions, the Scout tries to center it by turn-
ing slightly toward the appropriate direction (turn-
Left or turnRight). While doing this, the expected
target area is adapted. If the target is already cen-
tered and still far away, the Scout approaches it by
using the driveForward command.

If the confidence value doubt exceeds a threshold,
no target is visible in this frame and the explore com-
mand is executed. This is a relatively wide turn to
the left so that the Scout can observe a previously
invisible part of the environment. Both confidence
values are reset to zero before processing the next
frame.

3 Experimental Results

The performance of the proposed approach was eval-
uated with a set of experiments. A set of five experi-
ments each with a total of 30 runs was conducted to
test the different abilities of the software (Fig. 5). All
experiments were run in a real lab environment. The
system is supposed to recognize the target, approach
it to a distance of 30 cm, and then stop.

90cm

I

45

90cm

II

45

90cm

III

90

90cm

IV

120 cm

V

Figure 5: Setup for the experiments I–V.



Both the ability to locate the target and the ac-
curacy of distance estimations were tested. This di-
vides the results into four classes. Class A contains
only completely successful experiments. The runs in
which the target is found and approached, but in
which the Scout does not stop, define class B. These
runs are considered partially successful. Class C in-
cludes all cases in which the target is located, but its
estimated distance is too small resulting in prema-
ture stops. Class D holds the remaining runs.

Table 1 shows a summary of the experimental re-
sults. It can be seen that the Scout is recognized in
most runs. Experiments II and III show that the sys-
tem can handle tilt well. The exploration strategy is
verified by experiment IV. Experiment V shows that
the target is recognized even for the extreme dis-
tance of 120 cm. The results of the different classes
are equally distributed among the five experiments.

class result occurrences
A found target and stopped 10
B found target, did not stop 16
C stopped too early 2
D complete failure 2

Table 1: Summary of the experimental results.

In an average run of Class A or B the scout has to
process between 20 and 30 frames until the target is
reached. The maximum number of processed frames
was 140. In this run the scout had to do three com-
plete exploration-turns because the target was lost
several times. In most runs however the scout did
not have to do any complete turn to find its target.

Among the results is a noticeable number of cases
of class B. The reason for this behavior is a ten-
dency to underestimate the size of the target while
approaching it. The Hough Transform usually finds
several circles that are slightly smaller or bigger than
the real one. The algorithm picks the estimation for
the circular marker that is the most similar to the
one found in the previous frame. But as the Scout
approaches the target, the size of the real circle in
the image grows only slowly and the algorithm un-
derestimates the size of the target.

4 Conclusion

The experiments show that the target is found in
distances from 30 cm to 120 cm and that the Scout
manages to servo toward it. The method works in
unstructured non-static backgrounds and is invariant
against tilt of the target. The exploration strategy
ensures finding the target even if the Scout is ini-
tially not facing the target or if it is lost during the
approach.

Two problems that became obvious during the ex-
periments are underestimating the size of the target
while approaching it and computation speed. The
experiments were run on a Pentium II with 450 MHz

resulting in a processing speed of just one frame per
second. Computation time could be significantly re-
duced by using more up-to-date hardware or running
parts of the algorithms on specialized DSP boards.

5 Future Work

Future work aims at improving the existing system.
With a perfected termination criterion, the experi-
mental results could be enhanced significantly.

At present, every frame is completely searched for
every scale of the template. The search space could
be reduced significantly. After the target is found
once, only a part of the image could be examined
with just the appropriate template depending on the
size of the target found in the last frame.

It would be very interesting to find out if the var-
ious parameters and thresholds used in the system
can be estimated during runtime. This would im-
prove its ability to adapt to different environments.

An important task is generalizing the system to
find a wider spectrum of targets without using an
active marker and to recognize and follow moving
targets.

References

[1] D. Ballard. Generalizing the Hough transform
to detect arbitrary shapes. Pattern Recognition,
13(2):111–122, 1981.

[2] P. I. Corke. Visual Control of Robots: High
Performance Visual Servoing. Research Studies
Press, 1996.

[3] E. Huang, W. Yau, and L. Fu. An edge based
visual tracking for target within complex envi-
ronment. In Proc. of the American Control Con-
ference, pages 1993–1997, Chicago, IL, U.S.A.,
June 2000.

[4] J. Illingsworth and J. Kittler. A survey of the
hough transform. Computer Vision, Graphics &
Image Processing, 44(1):87–116, 1988.

[5] P. E. Rybski, N. P. Papanikolopoulos, S. A.
Stoeter, D. G. Krantz, K. B. Yesin, M. Gini,
R. Voyles, D. F. Hougen, B. Nelson, and M. D.
Erickson. Enlisting rangers and scouts for recon-
naissance and surveillance. IEEE Robotics and
Automation Magazine, 7(4):14–24, Dec. 2000.

[6] I. Sobel. Camera Models and Machine Percep-
tion. PhD thesis, Stanford University, U.S.A.,
1970.

[7] S. A. Stoeter, P. E. Rybski, M. Gini, D. F.
Hougen, and N. P. Papanikolopoulos. Verteilte
Steuerung heterogener mobiler Roboter. In Proc.
of Autonome Mobile Systeme, Informatik aktuell,
pages 270–277, Karlsruhe, Germany, Nov. 2000.
Gesellschaft für Informatik, Springer.


