
Learning Visual Object Definitions by Observing Human
Activities

Manuela Veloso, Felix von Hundelshausen, and Paul E. Rybski
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, 15213, USA

Abstract— Humanoid robots, while moving in our everyday
environments, necessarily need to recognize objects. Providing
robust object definitions for every single object in our environ-
ments is challenging and impossible in practice. In this work,
we build upon the fact that objects have different uses and
humanoid robots, while co-existing with humans, should have
the ability of observing humans using the different objects and
learn the corresponding object definitions. We present an object
recognition algorithm, FOCUS, for Finding Object Classifications
through Use and Structure. FOCUS learns structural properties
(visual features) of objects by knowing first the object’s affordance
properties and observing humans interacting with that object with
known activities. FOCUS combines an activity recognizer, flexible
and robust to any environment, which captures how an object
is used with a low-level visual feature processor. The relevant
features are then associated with an object definition which is
then used for object recognition. The strength of the method
relies on the fact that we can define multiple aspects of an object
model, i.e., structure and use, that are individually robust but
insufficient to define the object, but can do so jointly. We present
the FOCUS approach in detail, which we have demonstrated
in a variety of activities, objects, and environments. We show
illustrating empirical evidence of the efficacy of the method.

Index Terms— Affordance, Cognition

I. INTRODUCTION

Learning by observation is a powerful technique by which
a humanoid robot can obtain knowledge about the physical
world by watching humans interact with objects within it.
Specifically, such observations provide a powerful method for
learning affordance properties [1] of those objects. Affordance
properties, or how an object can be interfaced with, capture
the essence of an object’s utility. For instance, a chair can
commonly be used as a place to sit, but it can also be used as
something to stand on in order to reach something on a high
shelf. Likewise, a ladder can be used for obtaining something
on a high shelf, but can also be used as something to sit
on. By observing different activities performed on and with
specific objects, the functional descriptions of these objects
can be further enriched.

These techniques are particularly relevant for humanoid
robots. By definition, a humanoid robot’s physical characteris-
tics and appendages mimic that of a human’s. As a result,
humanoids can be expected to be able to perform sets of
activities similar to what humans are capable of performing.
Our long-term research goal is to have humanoid robots
observe and interact with humans over long periods of time.

During this period of time, the robots learn to identify objects
by observing humans use them and learn to associate sets of
activities that can be performed with those objects.

As with any sensor-based system, the importance of good
prior knowledge cannot be emphasized enough. Object models
provided to an intelligent sensor (as carried by a robot) dictate
how it can take signal data from a sensor stream, such as
images from a camera, and distill meaningful semantic infor-
mation. Our efforts mainly focus on robots using vision-based
sensor systems to understand the world around them. Several
other efforts have focused on enriching such object models
with a variety of knowledge, such as context [2] or activity [3].
In contrast to these approaches, which make use of known
visual object models, we relax the assumption that specific
visual models of objects are provided to the robot ahead
of time. For example, the robot knows that chairs exist but
initially has no idea what they look like. Instead, we assume
that the robot is aware of humans and can recognize activities
that these humans perform. By observing activities performed
with specific objects, the robot can learn the appropriate
affordance properties for these objects and properly classify
them.

In this paper, we present an algorithm called FOCUS (Find-
ing Object Classification through Use and Structure) which
models inanimate objects in the environments by structural
and functional definitions. The structural part of the model
aims at capturing a simple and generalized visual definition of
an object through robust feature detectors. The functional part
of the model captures the affordance properties of that object:
one sits down on a chair. Objects in the environment are
recognized by associating an observed action with a particular
environmental feature.

The classification of the object is dependent upon the spe-
cific activity for which it is used by the person. As an example,
if a robot equipped with the FOCUS algorithm observes a
human walk through a room and sit in a chair, then the visual
features nearest to where the human sat would fall under the
classification of “chair.” In this case, a “chair” is anything that
a human will sit upon. This classification of “chair” could
very well be given to a small table, a couch, or even a heat
register if the human chose to sit upon it. The interesting
aspect of this functional view is that it can be rather robust to
the specific environment conditions of the signal capture. By
connecting “sitting” with non-ambitious definition of a “chair,”



the problem is converted mainly into motion recognition and
the robustness to the environment is achieved. By finding one
object in the image, we can then generalize and find multiple
similar objects.

While FOCUS is a general sensor interpretation algorithm
capable of operating on any video stream, it is particularly
useful for humanoid robots because it relies on the ability
to recognize humans and to model their activity. Possession
of this prior knowledge is very appropriate for humanoids
because they are assumed to be capable of performing a set of
pre-defined physical human activities such as sitting, walking,
moving through portals, etc...)

The primary contributions of this paper are as follows:
• Unlike other object recognition algorithms which require

exemplar object definitions, FOCUS does not require
specific visual models of the objects ahead of time. The
robot’s initial concept of an object has no visual features
associated with it until they are learned by observing a
human interacting with that object in a specific fashion.

• FOCUS provides a generalization of the object descriptor
which abstracts away from specific visual feature modal-
ities. Any feature detection algorithm may be used in
so far as a FeatureDescriptor function and data structure
can be defined for it. This descriptor abstraction allows
any feature detector to identify regions of interest in the
image. Similarly, for each descriptor, a corresponding
SimilarityMeasure function must be defined which pro-
vides a metric by which individual features of the same
type can be compared.

The paper is organized as follows. Section II discusses
related work. The FOCUS algorithm is described in Sec-
tion III. Examples of how the algorithm performs on video
data sequences are presented in Section IV. Finally, section V
concludes the paper.

II. RELATED WORK

In the history of computer vision, many different approaches
have been proposed for how to incorporate prior knowledge
for recognition. Some examples of this range from active
contour models [4], to autonomous vehicle guidance on a
highway [5], and tracking a leaf in a cluttered background [6].
In [2], context is used to help disambiguate objects observed in
scenes. Additionally, activity was used to remarkably recognize
a variety of known objects [3], in specific environments. These
approaches have relied upon specific a priori visual object
models. Our work assumes that no such visual information is
available and that the robot must learn it by observing humans.

In the vision literature, the term functional object recogni-
tion has traditionally been used to describe the visual analysis
and recognition of the parts of an object [7]. For instance,
by recognizing the handle and striking surface of an object,
that object can be recognized as a hammer [8]. Other systems
reason about the causal structure of the visually-observable
physics behind a scene [9]. In contrast, our work relies on
recognizing how an object is used, i.e., its function, in terms

of the activities that a person performs on or near them rather
than a detailed analysis of the visual features of the objects
themselves.

In the humanoids literature, object recognition and learning
object models from multiple sources and modalities of infor-
mation has been explored by [10]. Another method, described
in [11] and again in [12], discusses how a robot can use
active perception (vision and tactile information) to explore its
environment to learn structural properties of objects through
manipulation. The paradigm of learning from observation has
also been used very successfully to train humanoids on specific
tasks [13] as well as action generation [14]. Our algorithm
draws from these two paradigms by making use of multiple
sources of information gleaned by observing human activities
to learn the visual object definitions.

In work very closely related to our own, [15] combines a
structural hierarchy of objects and empty spaces (voids) with
tracked activities of people interacting with them to identify
objects by their use. In this work, objects are classified as either
vertical or horizontal supportable objects on which someone
can place or hang portable objects. Additionally, voids are
recognized as doorways when someone moves through them.
A combination of a passive video camera and depth maps from
stereo are used to pre-segment the image in order to identify
these physical characteristics. Our approach only requires a
single video camera to run and includes a generalization phase
which takes the learned visual characteristics of a particular
object and finds other objects like it in the environment without
having to observe a person interacting with them first.

Representing a concept in multiple fashions has been pro-
posed by [16]. In our representation, we consider both the
function (how can the person interact with the object) as well
as the structural definition (what does the object look like).
We merge these two models to create a richer description of
the object.

III. FOCUS : FINDING OBJECT CLASSIFICATION
THROUGH USE AND STRUCTURE

FOCUS combines activity recognition with low-level visual
feature detection to learn visual models for object classes.
Figure 1 illustrates how the FOCUS algorithm combines
low-level visual features and activities identified from the
video stream to learn visual models for objects. Because this
algorithm depends on humans to teach the robot about its
environment, a significant emphasis has been placed on detect-
ing the presence of humans and understanding their motions.
People are detected in the video stream with a face detection
and tracking algorithm described in [17]. Once detected, the
people are tracked and their motions are fed into an HMM-
based activity recognition algorithm, described in [18], which
returns course body-specific activities such as standing, sitting,
and walking. FOCUS possesses a library of pre-defined object
classes which are indexed by the classified activity. The low-
level features that are closest to the location in the image where
the activity took place are selected and become part of that
object’s visual definition. The updated object class definition



is then stored in the library once again. Table I illustrates
the steps that the FOCUS algorithm takes when determining
which visual features belong to the object with which the
human is interacting. Definitions of object classes, low-level
feature abstractions, and algorithms for extracting features and
generalizing to new objects are described in more detail in the
following sections.

FOCUS

For each image Fj

• Search images for low-level features Ri, i = 1, ...,n,
• Run activity recognition based on face tracking
• If a known activity is recognized with face at pixel Ps, do:

– Temporal Association: index the image Fj−∆ f , where ∆ f
is the temporal association of object.

– Spatial Association:
∗ Predict the expected pixel location Ps−∆p, where ∆p is

the spatial association of object.
∗ Select the feature Rk with center of gravity closest to

Ps+∆p.
∗ Classify region Rk as object

– Object Generalization: Search for regions with similar
color to Rk , to classify other objects of the same class.

TABLE I
FUNCTIONAL OBJECT RECOGNITION

A. Object Classes

Object classes in FOCUS consist of several different com-
ponents, some of which must be pre-defined. The pre-defined
components represent the prior knowledge about humans and
activities that must be known before the visual features of any
object can be learned. These pre-defined components include
the specific affordance properties of the object, the expected
spatial association with respect to the human’s activity, and
a temporal association which is used to avoid occlusions.
The unknown component of an object is the visual feature
definition which, unlike the previous components, can be
initially unknown. All of the a priori object class properties are
stored in an ContextDescriptor which is used by the FOCUS
algorithm to identify the low-level visual features to store.

1) Affordance Property: Every object class to be detected
must have a specific activity that can be recognized when the
human uses it. Two examples of such object categories are
chairs and doors. For FOCUS, a chair is any object that a
human can sit down upon, and a door is any object that a
human can walk through. As long as the object recognizer
can identify those activities when they occur, the location of
the person is used to specify low-level features that are part
of the object.

2) Spatial Association: Some a priori assumptions must
be made about objects and how a person will interact with
them. For instance, if an object is expected to be at head
height or higher, candidate feature definitions that are below
that location can be excluded. Likewise, additional heuristics
can be employed to identify typical background regions that

are walls and ceiling. Note that these assumptions only put
very weak constraints on the kinds of features that can make
up these objects and cannot be used to solely identify the object
in question.

3) Temporal Association: In many cases, when a particular
activity is identified which would indicate the presence of a
certain object, the person will most likely be occluding some
or all of the object from the camera’s point of view. In order
to obtain an unobstructed view of the object, FOCUS keeps a
history of the captured frames of video. This history is used
to effectively “rewind” the visual record to a time well before
the human performed the specific activity. This is intended to
allow FOCUS an unobstructed view of the object.

4) Visual Features: This component represents the learned
definition of the object that consists of a list of low-level fea-
ture abstractions (defined in the next section). As the FOCUS
algorithm observes more examples of a particular object class,
the definition of that class is enriched by additional visual
feature examples.

B. Low-Level Visual Feature Abstractions

FOCUS makes use of a visual feature abstraction which
allows any low-level feature type (or combinations of feature
types) to be used as the foundations for learning visual object
models. This is one of the primary strengths of the FOCUS
algorithm since it does not rely on any specific feature modality
but can easily use any that are made available to it. A FOCUS
low-level visual feature consists of the following components:
a FeatureDescriptor, at least one SimilarityMeasure, and a
CandidateFeature.

• FeatureDescriptor : Specifies the definition of a particular
feature and stores the necessary data fields. For example,
a contiguous region feature is represented by a mean color
and a boundary contour, while a SIFT [19] feature is
represented by scale, orientation, a local image patch, and
a keypoint vector.

• SimilarityMeasure : Compares two FeatureDescriptors of
the same type. For a single FeatureDescriptor there might
exist many different SimilarityMeasures.

• CandidateFeature : Describes two feature-specific func-
tions Grab and Generalize which are the core of the FO-
CUS algorithm. The Grab function takes an object class
ContextDescriptor and returns a FeatureDescriptor from
the image if one can be found at the location specified
by the ContextDescriptor. The Generalize function takes
as input the previously-defined FeatureDescriptor and a
SimilarityMeasure, searches the image for all features of
that type, and returns the ones that match the similarity
criteria.

Currently, two different types of low-level features are
implemented in FOCUS. The first is a contiguous region
tracker, described in [20], and the second is based on the PCA-
SIFT [21] algorithm.
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Fig. 1. Learning visual features from identifying activities. Raw video taken in the environment is captured by a camera and passed both to a low-level feature
extractor as well as a face recognizer and tracker. The motions of tracked faces are passed to an activity recognizer which returns the activity of that person. If
an activity is defined such that it requires the human to be interacting with a particular object, then an element in the object class library is selected and updated
with the visual features that are closest in proximity to the location of the activity. This updated object definition is passed back to the class library for later use
in identifying that class of objects.

Grab for region features

• Given:
1) A ContextDescriptor, in particular a point p from activity

recognition where a region feature might be and a time
shift ∆t that specifies image It−∆t when the hypothetical
feature is likely to have been visible.

2) An occupancy grid O of the same size than the image
3) An connectivity grid C of the same size than the image
4) A color similarity measure sc.
5) A color similarity threshold tc.
6) A queue Q in which initially only p is stored.

• Initialize:
1) Clear the occupancy grid, only mark the corresponding

cell of p.
2) Clear the connectivity grid
3) Set the mean color cm to zero.

• Iterate while Q is not empty
– extract p from Q

∗ for all neighbors qi of p
1) if the occupancy grid is free at qi

· Update the mean color cm by the color at qi
· Calculate the color difference ∆c between pixel

p and qi using similarity measure sc.
· If ∆c > tc add qi to Q and mark the occupancy

grid at qi

2) else mark the corresponding edge in the connectivity
grid C

• Extract all boundary contours of the region from C, including
“islands” inside regions, determine the region’s outer boundary
as a sequence of points.

• Results: A region feature descriptor (cm,B) where
– cm is the mean color of the region
– and B its outer boundary contour.

TABLE II
REGION GROWING WITH BOUNDARY EXTRACTION

C. Candidate Feature Extraction and Object Generalization

Because each low-level feature abstraction must define its
own specific CandidateFeature and SimilarityMeasure compo-

Generalize for region features

• Given:
1) A region feature descriptor F from a grabbed region
2) An image I where to find similar features
3) A SimilarityMeasure S that compares to region Feature-

Descriptors.
4) An initially empty list L of FeatureDescriptors.

• Determine all region FeatureDescriptors Ei in the image by tes-
selating the image by subsequent region growing with boundary
extraction.

• For each of these FeatureDescriptors Ei evaluate the given Simi-
larityMeasure S with respect to the learned FeatureDescriptor F .
If the SimilarityMeasure is met, include Ei in the list of features
L.

• Results: The list L of features.

TABLE III
GENERALIZE FOR REGION FEATURES

nents, we present example algorithms for the contiguous region
feature. The algorithm for grabbing a contiguous region feature
is defined in Table II. Similarly, the algorithm for generalizing
that feature type is defined in Table III. Two different similarity
measure for this feature type are defined for color, as shown
in Table IV, and for shape, as shown in Table V.

IV. EMPIRICAL VALIDATION

Figure 2 illustrates two different examples of the FOCUS
algorithm running on video streams. In the first example,
shown in Figures 2(a)-(c), a person is tracked as they walk
down the rows of a theater. The camera is placed in a stationary
position near the bottom of rows of chairs. The theater is
filled with chairs but FOCUS has not seen any examples of
anyone sitting in these chairs before, so it does not know
to recognize them. In Figure 2(a), the person sits down in a
chair. The activity recognition system recognizes this event and
FOCUS uses this information to identify the visual features for



(a) Example 1: A person is tracked in a theater
as they walk in from the left and sit down in
a chair. This sitting down action is detected
by the activity recognizer which triggers the
search for “chair” objects.

(b) The Grab function uses the history of
saved frames to go back to a point where the
person was not occluding the chair and obtains
a contiguous image at that location (shown in
white)

(c) The Generalize function takes the pa-
rameters learned from the Grab function and
highlights all of the features that match those
values (shown in white)

(d) Example 2: A person has emerged from
their office. Their face is detected at the en-
tryway to their door and the contiguous region
represented by their door is obtained with the
Grab function. The door is highlighted in
white.

(e) The Generalize function uses the parame-
ters returned by the contiguous region capture
routine to find another door in the foreground
of the image.

(f) On a different floor of the building, the
newly generalized door parameters are used to
find additional doors (in white).

Fig. 2. Examples of FOCUS for learning to recognize chairs as well as doorways.

Region Similarity Measure Based on Euclidean Color Difference

• Given:
1) Two region feature descriptors F1 and F2
2) A threshold tc

• Calculate the Euclidean color distance ce in RGB space of the
mean color of region F1 and F2
ce :=

√
(r1 − r2)2 +(g1 −g2)2 +(b1 −b2)2

• Results: True if ce < ct , false otherwise.

TABLE IV
REGION SIMILARITY MEASURE BASED ON EUCLIDEAN COLOR

DIFFERENCE

a chair. In Figure 2(b), the FOCUS algorithm backtracks a few
seconds in the visual history until the tracked person’s face is
several body widths away from where the sit down activity
occurred. This is to make sure that the person is not occluding
the object on which they sit. In this example, the contiguous
region feature detector was used to segment the image. The
closest region to that sit down activity was selected and is
highlighted in white. Finally, by using parameters learned from
the example, FOCUS is able to generalize from that first region
and identify a large number of other chairs in the image, as
shown as white blobs in Figure 2(c). From this example, we

Region Similarity Measure Based on Shape Difference

• Given:
1) Two region feature descriptors F1 and F2
2) A threshold ts

• Calculate the bounding boxes R1 and R2 of the boundary contour
of F1 and F2, respectively

• Calculate cs := | log w1
h1

− log w2
h2

|
• Results: True if cs < ts, false otherwise.

TABLE V
REGION SIMILARITY MEASURE BASED ON SHAPE

can see that FOCUS has identified an association between a
particular set of low-level vision features and the activity of
sitting down. Note that not many of the chairs in the very back
of the room are identified. This is merely a limitation of the
resolution of the camera. With a higher-resolution camera or
a zoom lens to bring those chairs into view, they could also
be identified.

In the second example, shown in Figures 2(d)-(f), FOCUS
identifies that a person has appeared suddenly in the image.
In this example, the camera is placed on a moving platform
and travels at a fixed rate down the hallway. The sudden
appearance of the person is an indication that they have



emerged through a doorway of some sort. In Figure 2(d)
FOCUS uses the contiguous region feature extractor to identify
the region that was closest to the location where the person’s
face appeared. The region that is highlighted in white is the
door. In Figure 2(e), the parameters of the region are used by
the generalize function to locate other regions in the image
which could correspond to doors (also shown in white). In
this figure, a second doorway is identified. Finally, to illustrate
the robustness of this algorithm, these new parameters were
used on a different floor of the building, shown in Figure 2(f),
to identify two additional doorways based on those learned
parameters.

V. CONCLUSIONS

In this paper, we introduce an approach well suited to use
with humanoid robots because of the need for the system to
understand human activity models a priori. FOCUS tracks
the use of an object through recognizing activities of people
in interacting with the environment. The main contributions
of FOCUS are: (i) the use of object class definitions which
describe how the object can be detected by its affordance
properties rather than its specific visual characteristics; (ii)
a framework for representation of low-level visual feature
abstractions which allow the visual field to be segmented into
potential object hypotheses.

Our definition of the object classes allows for any sort of
generalized visual feature algorithm to be used. As FOCUS
observes different instances of the same kind of object class,
or even from the same direction, the object models can be
expanded to be made more robust. Following our current
examples, as FOCUS observes humans sitting in chairs in
multiple different environments, each of these different visual
features would be added to the list of features that identify a
chair and greatly increase the performance and expressibility
of the object models.

The FOCUS algorithm is general purpose to any visual data
stream. The experiments in this paper were performed from
a stationary viewpoint and from straight-line motion down a
hallway. We are currently extending FOCUS to operate on a
mobile robot platform which will perform active exploration
to seek out multiple viewpoints from which to observe the
object.
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