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Abstract.

We are interested in studying how environmental and control fac-
tors affect the performance of a homogeneous multi-robot team doing
a search and retrieval task. In particular, we looked at the affects of
target distribution (uniform or nonuniform), the number of robots, and
search strategies (purposeful or random). In our experiments, purpose-
ful search employs localization so that a robot can determine its position
and remember locations of target sightings. During random search, a
robot has no knowledge of either its own or a target’s location. Regard-
less of search strategy, the robots perform the task without any explicit
communication or knowledge of their teammates. Although their sensor
suite is very limited, the robots are still able to complete their task. We
analyzed the performance of a series of experiments and we present the
results.

1 Introduction

Cooperating teams of robots have the potential to outperform a single robot attempt-
ing an identical task. Increasing task or environmental knowledge may also improve
performance, but increased performance comes at a price. In addition to the monetary
concerns of building multiple robots, the complexity of the control strategy and the
processing overhead can outweigh the benefits. In this paper, we explore these trade-
offs by comparing single robot to multi-robot team performance, as well as examining
the benefits of increased intelligence in the form of environmental knowledge.

We propose a task of search and retrieval whereby robots locate, collect, and return
targets to a home base. Robots are homogeneous and perform independently with
a localized goal of target retrieval without the aid of communication. The task is a
simplified version of minefield clearing where mines are localized using close-proximity
sensors such as magnetometers, or of a search-and-rescue task where robots find and
retrieve specific targets such as those dropped by air. For performance evaluation
relative to strategy, the research questions we address in this paper are: How does the
distribution of the targets in the environment affect performance? Is the ability to
explicitly localize helpful in solving the task? How does the number of robots operating
in the same area affect performance?

2 Related Work

Most research with multiple robots has focused on various forms of collaborative work as
detailed, for instance, in [2, 6]. While collaboration may be essential, we are interested
in studying tasks that can be done by a single robot, but where using multiple robots



can potentially increase performance either by decreasing the time to complete the task
or by increasing the reliability. Sample tasks include cleaning up trash, mapping a
large area, and placing a distributed sensor network. For this type of task, cooperation
usually requires communication among the robots [7, 9, 10]. Even simple communica-
tion has been shown to substantially increase the performance of robots when foraging,
consuming, and grazing [3]. However, direct communication can be replaced by indirect
communication via sensing or via the environment [1, 4].

We are interested in studying this problem from a rigorous experimental standpoint.
We want to examine the kinds of unforeseen effects that are caused by the implemen-
tation of algorithms on real robots. Such details may be overlooked or be impractical
to implement in a simulation study. While some of the observed effects may be unique
to our hardware, we hope that by analyzing the data from real robots we can uncover
cases where the performance deviates from the expected norm.

3 Robot Hardware

The robots are constructed out of LEGO Technic blocks. LEGOs were used because
they are lightweight, easy to work with, and ideal for rapid prototyping. The chassis
is a dual-treaded skid-steer design, allowing the robot to turn in place. Each robot is
equipped with an articulated cargo bay that is capable of securely grasping a target.
For obstacle avoidance, a set of bumpers are located just beyond the front of the robots’
treads as well as on the back. The robots and the targets are shown in Figure 1.

Figure 1: The robots and targets

The targets that the robots attempt to locate transmit an omnidirectional stream
of 40 KHz infrared light that is detectable at a range of 70 cm. Two infrared detectors
are mounted on each side of the robot and two more are mounted on the front. A
turret-mounted set of cadmium-sulfide (CdS) photoresistors is used to track visible-
light landmarks. The on-board computer is the Handyboard, an MC68HC11-based
microcontroller with 32K of RAM [8]. The software was developed in Interactive-C
[11], a subset of C with multitasking capabilities.

4 Robot Software

Several parallel sensory-motor behavior processes, similar to the subsumption algorithm([5],
are used to control the robot’s behavior. Each process is responsible for handling one



segment, of the robot’s control code by mapping sensors to actuators. When the sen-
sor(s) monitored by a process are activated (e.g. when collision detection is activated
by a depressed bumper), the process tries to control the actuators. Conflicts between
processes running in parallel are resolved with assigned priorities.

Localization and navigation is achieved with three collinear lightbulbs that serve as
both home bases and as landmarks. When a robot randomly searches for targets, it
navigates by moving away then towards the light at random time intervals. For pur-
poseful search, the robot uses localization to navigate towards a known target location.
To establish a target location, the localization routine is invoked when a robot encoun-
ters a target while returning another to home base. Once the target is dropped off, the
robot navigates back to where the other target was found by invoking the localization
routine every 20-30 seconds and using it to correct its heading.
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Figure 2: Landmark localization used by the robot. The lines connecting the robot and lights
represent line of sight. The origin of the coordinate system is positioned at Light-2. To avoid
symmetry problems, the robot moves only in the positive X direction. The values of a,b,c &
d are computed as shown on the right.

Given some assumptions about the placement of the lights in the environment,
the global pose (x,y,d) of the robot can be determined. The values of L; and L, are
programmed into the robot a prior: and are assumed never to change. The robot uses
its light-tracking turret to measure the angles to the three lights with respect to its own
orientation (¢, ¢2, and ¢3)!, thus v, = (¢1 — @) and 75 = (¢ — ¢3). The angles o and
B and the distance to the center landmark D are solved for and from these values, the
robot’s global pose (z,y,#) can be calculated. The robot’s orientation # is measured
with respect to the global x axis. Figure 2 illustrates this analytical solution. The
localization method estimates the robot’s position to within 25cm and its orientation
to within 5 degrees. However, if it is too close to a light, localization will fail.

5 Experimental Description

Many factors determine the effectiveness of a cooperative multi-robotic solution to a
search and retrieval task. Three such factors include the physical distribution of the
targets, the kinds of search strategies employed by the robots, and the number of robots
used. The purpose of this work is to study how the overall performance of a robotic
team is affected by altering these factors.

To solve this task, the robots started from a fixed location, searched an area for
targets and returned them to one of three drop-off zones. Experiments were run with

'For the sake of clarity, only ¢, is shown in the figure.



one-, two-, and four-robot configurations. The robots were not explicitly aware of each
other’s presence and simply treated each other as obstacles if they collided. Target
locations were either distributed uniformly or nonuniformly (i.e. all placed in one far
corner of the arena). Some experiments were run using localization while others were
not. Without the ability to localize, a robot’s search for targets was random. Figure 3
describes the experimental setup.
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Figure 3: The experimental environment was roughly 5.4 meters on a side. All experiments
contained nine targets and eight obstacles. Three lightbulbs were placed at known locations
and were used to determine position and orientation. Obstacles are relatively low and do not
block the robot’s view of the landmarks. Robots and targets are not shown to scale.

6 Experimental Results

For each of the experiments, the time that a robot returned a target to a drop-off zone
was recorded and averaged over five runs. Each experiment was run until all nine tar-
gets were retrieved. Table 1 shows the average time in seconds that it took to retrieve
all targets. Each graph in Figure 4 shows the average time to retrieve each target
when using one-, two- and four-robot teams. Results across columns differ by target
distribution where left is nonuniform and right is uniform. Rows differ by use of local-
ization. Results were obtained from experiments where no localization was used (top
row), where localization was used (middle row), and where localization was used but
the processing time was factored out (bottom row), making localization instantaneous.

uniform uniform uniform nonuniform nonuniform nonuniform
1 robot 2 robots 4 robots 1 robot 2 robots 4 robots
no localize 934 458 374 1672 1058 587
localize 1108 478 343 1911 1030 593
instant localize 986 478 323 1328 *794 *444

Table 1: Average time in seconds when the last target was retrieved. Star (*) indicates
statistically significant difference at the 95% confidence level between instant localize and no
localize results of the same column.
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Figure 4: Experimental results for the search and retrieval task. Each chart shows the average
time that it took to find each target for one, two and four robots. Experimental variables are
the distribution of targets in the environment (from uniform to nonuniform), and purposeful
versus random search. The time axis is shown in a base 10 logarithmic scale.



Each time a robot localizes, it must remain stationary for 18 seconds while it collects
and processes the landmark data?. This 18-second delay had a significant effect on the
overall time to complete the task, as reflected in the table. There are two reasons for
factoring out localization overhead. 1) It indicates potential payoff for improvement
of the localization technique, and 2) it can help determine how much overhead the
system can afford while still improving task performance. In practice, instantaneous
localization would be difficult to achieve but it is reasonable to assume that the 18
seconds could be significantly reduced. Varying the time it takes to localize can provide
a maximum time that localization can take while still improving performance.

In looking at how localization affects performance, it can be seen from inspection
of Figure 4 and Table 1 that there was no improvement when retrieving uniformly
distributed targets. During the experiments, when returning a target to base, robots
rarely encountered other targets, thus the ability to localize (i.e. storing the location of
a found target) offered no advantage. In the experiments with nonuniformly distributed
targets, there was a qualified performance improvement. Robots almost always encoun-
tered other targets when returning to base, thus a robot with localization capability
could navigate directly towards the cache of targets rather than wander randomly. The
computational overhead of our implementation of localization outweighed this benefit
of purposeful search, but by factoring the overhead out (as described above), we can
see how performance can improve.

T tests were run to determine the significance of the non-localization versus local-
ization trials and the non-localization versus instant localization trials. Only the two-
and four-robot trials with the instant localization and nonuniform target distribution
were statistically significant at the 95% confidence interval (one-tailed, two-sample ¢
test, p = 0.0482 and p = 0.0291 for the two- and four-robot cases, respectively.) All
other localization results (instant or otherwise) were not statistically significant from
the non-localization cases.

Additional analysis was conducted on the target search time of each robot. Table 2
illustrates the average time that it took each robot to grab a new target after returning
a captured one to the base. Once again, the localization and instant localization results
were compared against the no localization results for statistical significance. For this
data, all three of the the instant localization with nonuniform target distributions were
significant (one-tailed, two-sample ¢ test, p = 0.0085, p = 0.0032, and p = 0.0371 for the
one-, two- and four-robot cases.) All other localization results (instant or otherwise)
were not statistically significant from the corresponding non-localization results.

uniform uniform uniform nonuniform nonuniform nonuniform
1 robot 2 robots 4 robots 1 robot 2 robots 4 robots
no localize 83 57 64 150 181 142
localize 96 65 79 131 143 152
instant localize 89 65 72 *88 *100 *94

Table 2: Average times in seconds for a robot to grab a new target right after a captured one
has been dropped off. These values are calculated by the number of targets actually returned
during the run. The differences between the starred instant localize results and the no localize
results in the same column are statistically significant at the 95% confidence level.

It should be noted that the use of localization in an environment with uniformly

2This slow speed is due to the fact that Interactive-C is an interpreted language, all floating point
processing on the MC68HC11 is done in emulation (there is no hardware FPU), and the Handyboard’s
CPU clockspeed is only 2MHz.



distributed targets actually degraded performance. This is attributed both to localiza-
tion errors that would cause the robot to head off in the wrong direction, and in the
multi-robot case, to navigating towards a target that was no longer present because
another robot had picked it up.

To evaluate how team size affects performance, we calculated linear speed-up for
each of the two- and four-robot teams. Results are shown in Table 3. We defined
speed-up S, as:

. tl / n

=

where n is the number of robots and ¢, is the time it takes n robots to retrieve all
targets. This is similar to a speed-up measure found in [3]. The system is said to
have linear speed-up if S,, = 1, superlinear if S, > 1, and sublinear if S, < 1. As
was expected, speed-up of two-robot teams was larger than the speed-up of four-robot
teams.

Sn

uniform uniform [| nonuniform nonuniform
2 robots 4 robots 2 robots 4 robots
no localize 1.02 0.62 0.79 0.71
localize 1.16 0.81 0.92 0.81
instant localize 1.03 0.76 0.83 0.75

Table 3: Linear speed-up for two- and four-robot teams. Values of 1 indicate linear speed-up,
less than 1 indicate sublinear.

7 Conclusions and Future Work

We have analyzed how the performance of a robotic team is affected by environmen-
tal factors, the number of robots, and the search strategy employed by these robots.
We expected that localization would greatly assist the robots in the nonuniformly dis-
tributed environment and not so much in the uniformly-distributed environment. This
turned out to not necessarily be the case due to the somewhat lengthy overhead (18
seconds) involved in localizing. We did note that if we discounted the time to localize,
the robots were much faster at finding their way back to a new target once one had been
dropped off. More work needs to go into the search strategies to reduce the overhead.
Another hypothesis we had was that adding more robots would greatly increase the
performance of the team, but continually increasing the number of robots wouldn’t be
as beneficial. This was shown true in our speed-up analysis. These results show that
knowledge about the structure of the environment is very important when choosing a
search strategy for a team of robots.

Future work will include optimizing the localization system so that it runs faster
and is more accurate. This will help increase the amount of time that robots contribute
to the completion of the task. Another variation to consider is a maze-like environment
where the targets would be enclosed inside of small alcoves. In this case, explicit
localization is expected to be extremely important. Path planning may also prove
to be beneficial, if not essential, in this kind of environment. Finally, the effects of
communication between the robots will be explored. Experiments will be run to analyze
different kinds of communication systems and determine how much information should
be shared between the robots so they can complete their task.
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