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Abstract

This paper describes a demonstration-based pro-
gramming system in which a mobile robot observes
the actions of a human performing a multi-step task.
From these observations, the robot determines which
of its pre-learned capabilities are required to replicate
the task and in what sequence they must be ordered.
The focus of this paper is on the Hidden Markov Model
method used to learn and classify the actions as “ges-
tures”. A preliminary system demonstration is also
described in which the robot observes the human per-
forming a block distribution task. During the demon-
stration, the robot actively follows the demonstrator to
maintain its vantage point and to infer spatial rela-
tionships.

1 Introduction

Gesture-based programming [10], or programming
by demonstration, is a powerful tool which can be used
to impart abstract knowledge about a task to a robotic
system in an extremely short amount of time. In this
method of training, a task expert, such as a human (or
another robot), does the actions necessary to complete
a task, or gestures in such a way as to impart symbolic
knowledge about the task.

The primary benefit of this method is that the
trainer does not have to provide the robot with an
exact model of all of the actions necessary to accom-
plish its goal. All the trainer needs do is present the
parameters of these actions to the robot. Such param-
eters may include what kinds of objects to affect by
the action, where the robot should be oriented while
executing the action, and so forth.

In this paper, a programming by demonstration
system is described. This system, implemented on a
small mobile robot, makes use of the robot’s vision sys-
tem to analyze and classify particular actions that the

human performs. These actions are classified using
a Hidden Markov Model (HMM) [8] representation.
HMMs are used because they are capable of identi-
fying a particular decision model out of a seemingly
random set of observable symbols. This approach is
extremely powerful because it allows one to determine
the underlying intention behind an action which may
normally appear ambiguous.

2 Related Work

A large amount of research has been devoted to
the gesture-based or demonstration-based program-
ming paradigm. Voyles and Khosla [11] has developed
a system of gesture-based programming based on a
multi-agent model of “encapsulated expertise.” Robot
to robot action recognition and cooperation has been
successfully accomplished using a stereo vision system
by Kuniyoshi [5]. Bakker and Kuniyoshi [2] extended
this to “learning by imitation” in which a robot learns
its behaviors by observing the behaviors of another
robot. Pook and Ballard [7] have generated a work-
ing system which learns the parameters for teleoper-
ated manipulations. Zhu [16] made use of HMMs for
the recognition and avoidance of obstacles for dynamic
path planning of a mobile robot. Lee and Xu [6] built
a gesture-based programming system in which HMMs
were used to classify sign-language gestures from a
Cyberglove. HMMs have also been used by Yang et
al. [14] for learning the mapping from position trajec-
tory in Cartesian and joint space as well as learning a
velocity trajectory in Cartesian space from the teleop-
erated control of a manipulator. Another example of
how HMMs can be used to classify continuous gestures
and is in written symbol recognition [15].

HMDMSs have been used quite successfully in purely
vision-based gesture recognition systems as well.
Starner and Pentland have developed a system for rec-
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Figure 1: Architecture of the Demonstration-Based Programming System

ognizing American Sign Language (ASL) symbols [9].
Wilson and Bobick developed a system for classify-
ing human motions using a variation on the standard
HMM framework [12]. Brand et al recognize Tai Chi
motions with another variant on the standard HMM
framework [3].

There are many others working on gesture recogni-
tion with HMMs, but these contributed most to our
inspiration for this paper. Our HMM is described in
sections 3 and 4.2.

3 Hidden Markov Models

Hidden Markov models are used to model the un-
derlying processes of a system whose inner work-
ings cannot be completely observed. This is a use-
ful method for determining the underlying processes
behind the individual components of a gesture. A fun-
damental assumption that can be made about human
gestures is that simply observing a gesture is not suf-
ficient to extract the underlying structure behind it
[15]. The same gesture may appear to a naive system
to be different when repeated by different people under
different circumstances. A HMM attempts to classify
the underlying structure of the gesture and correlate
it with the actual observed input.

Gestures or speech (or any other kind of sig-
nal continuous signal) can be discretized and rep-
resented as single-dimensional strings of observation
symbols, O = (01,02,...,0,). An algorithm called
the Forward-Backward algorithm [8] is used to deter-
mine the likelihood that a given HMM, A, produced
a string of observed symbols. In order to adjust the
parameters of an HMM to recognize a particular class

of observation symbols, an algorithm known as Baum-
Welch is used [8].

4 Demonstration-Based Programming

The demonstration-based programming system de-
scribed in this paper consists of three sections, as
shown in Figure 1. The first part is a signal pre-
processor, which filters the raw sensor data into a form
that is usable by the rest of the system. The second
part is the gesture classifier which uses a HMM repre-
sentation of gestures to recognize those made by the
teaching human. The third part is the robotic skill
system which contains all of the sensory-motor skills
necessary for the robot to interact with its environ-
ment.

This system is implemented on an RWI Pioneer 1
[1] mobile robot outfitted with a Newton Labs Fast-
Track Color Vision System (FTVS) [13]. All software
is written in C++ using the Saphira 6.1f APT [4] run-
ning under Linux. The vision system performs color
segmentation on the image, given user-defined param-
eters. The FTVS has three separate data channels
which it can use to track different colors. Regions in
the image which correspond to these colors are ana-
lyzed and statistics about largest single blob in the
image are computed at 60Hz. One channel is defined
explicitly for the teacher color. The other two chan-
nels are defined as “data” channels which colors of
objects that the robot can manipulate are stored in.

4.1 Signal Pre-Processor

Several steps are necessary to compress the raw vi-
sual information into a form that the robot can under-
stand and immediately act upon. The FTVS returns
statistics about each of the three colored blobs that
it tracks. These statistics include center of mass, area
and perimeter of a bounding box surrounding the blob
of color. These statistics are passed into data modules
which discretize the sensor data at 10Hz. This first-



pass discretization consists of reporting AX and AY
of the center of mass for each channel from one time
step to another.

Two object tracking modules analyze the values of
AX and AY coming from the previous step and deter-
mines whether the motions of the blobs in the image
frame correspond to gesture segments. Gestures are
represented as sequences of symbols which describe
the motion of an object through time and space. If an
object is seen to move, this movement is classified as
either a horizontal or a vertical displacement. If the
relative positions of the blobs in the teacher channel
and a data channel changes, this movement is classi-
fied as an increase or decrease in relative proximity of
those two channels. In either case, these symbols are
generated and concatenated into a single-dimensional
stream and are passed into the gesture classifier.

4.2 Gesture Classifier

Each gesture that the robot must recognize is repre-
sented as a unique HMM. When a new gesture is to be
learned by the robot, a new HMM representation must
be created and trained on sample gesture data. The
human teacher provides a data set of sample gestures
that is used by the Baum-Welch algorithm to train the
new HMM. Once trained, this HMM is loaded into a
database and is ready for use.

When the human performs a gesture for the robot,
the strings of symbols, O = (01, 02,. .., 0,), generated
by both the object tracking modules are fed into the
HMM classifier. In order to classify this gesture, the
value of P(O|);) must be generated for each HMM in
the database. The Forward-Backward algorithm is ap-
plied to calculate the likelihood for each HMM. Once
all the values of P(O|);) have been calculated, a con-
fidence measure (similar to Lee & Xu [6]) is calculated
for each A;. This confidence measure is defined as:

log(P(O|A\k))
Ci= Z log(P(O|\;)) "

Finally, a HMM is only chosen if C; > Zk# Ck.
Under this restriction, the “best” HMM in this winner-
take-all strategy must produce a value of P(O|);) that
is significantly better than all of the others. If no
such HMM can generate this confidence, the system
reports that it cannot classify the gesture as it is too
ambiguous.

There are two data channels feeding their observed
symbol streams into the gesture classifier. All of the
gestures in the database are channel-independent, so
it is possible that a HMM could be chosen for one

string of observed symbols and another HMM could
be chosen for the other string. In this case, the HMM
with the highest value of C} is chosen and that gesture
(in the appropriate channel) is selected. The system
is currently not able to classify two gestures occurring
simultaneously.

The gestures that the robot is programmed to rec-
ognize are the following:

e Move Towards Object

e Move Away from Object

e Drop Object

e Grab Object

al2 a23 a34

Figure 2: Bakis (left-right) HMM, with labeled states
and state transitions.

In order to determine the proper topology of the
HMM (how many states are necessary) to appropri-
ately classify gestures, several different topologies of
HMM were tried. For the gestures that were to be an-
alyzed, the best number of states (in terms of expres-
siveness and generality) was found to be four. Thus,
for the implementation of this system, each HMM
had four states of which each state could generate
six observable symbols. The topology of the HMMs
was also kept reasonably simple. For the recogni-
tion of the gestures, a simple Bakis (left-right) Hidden
Markov Model is used, as shown in Figure 2. As the
model changes state, moving from left to right, the
states to the left become inaccessible. This particular
structure of HMM is used extensively in the speech-
recognition community [8] because of its ability to
classify time-dependent sequences of symbols. Speech
data is assumed to be time-dependent and non-cyclic
and this assumption works well for gesture classifica-
tion. The following additional restriction is placed on
the state transitions for this model: a;; = 0if j < ¢ or

> (74 1). This means that each state in the Bakis
models used for this data can only transition to itself
or to the state immediately to the right.

4.3 Robot Skill System

The final part of the demonstration-based program-
ming system is the database of skills that the robot is



programmed with. A skill is a sensor-motor primitive
that allows the robot to interact with its environment.
Without this basic level of competence, the robot is
unable to do any useful work.

All of the gestures that the robot knows how to rec-
ognize in its HMM database have a corresponding skill
associated with them. When a robot recognizes a ges-
ture, it determines the skill that corresponds to that
gesture and records the index of that skill as well as
the Cartesian coordinates of where it was when it saw
that gesture in its plan execution sequencer. When
the robot has learned the task (i.e. the human has
stopped demonstrating), the robot executes each ac-
tion stored in its plan execution sequencer in the order
that it saw them.

All of the known gestures have a corresponding skill
associated with them. However, not all skills have
a corresponding gesture. The mapping between the
robot’s gestures and some of its skills is shown in Ta-
ble 1. The skills that do not have an associated gesture
are generally used as part of the training process or
are used for assisting the robot as it moves about the
environment on its own. The complete list of skills is:

e Approach: This skill uses a closed-loop control
routine to move about in its immediate location
and search for an object of an appropriate color.
Once one is found, the robot visually servos near
to the object but not close enough to disturb it.

e Retreat: This skill moves the robot away from
an object so that it will not disturb or push it in-
advertently when it travels to a different location.

e Grasp: This skill allows the robot to maneuver
itself close enough to the object and then use a
open-loop control routine to grasp the object as
it moved out of range of the camera (which hap-
pened when the object was within 6 inches of the
robot).

e Release: This skill is simply the inverse of the
grab object skill.

e Follow: This skill is used exclusively when the
robot is being trained by the task expert. When
the robot comes within a meter of the teacher,
it stops and waits until the teacher gestures or
moves again.

e Travel: This skill moves the robot from one loca-
tion (stored in Cartesian coordinates) to another
location.

Gesture Skill
Move Towards Object Approach
Move Away from Object | Retreat
Drop Object Release
Grab Object Grasp

Table 1: The mapping from gesture to skills

5 Experiments
5.1 Gesture Recognition

Each HMM in the gesture classification database is
trained with 25 sample gestures of a particular type.
To test the classification system, 100 additional test
samples of each kind of gesture are obtained. Each
sample is fed into the HMM classifier, and the val-
ues for P(O|);), and C; are computed for each. The
results are shown in Table 2. In the second column,
a value of less than 100% in the P(O|);) column in-
dicates that the system could potentially mis-classify
gestures if the classification was accomplished using
likelihood calculations alone. The values in the third
column represent the percentage rate of how many
times the system was confident of its classification. A
low value here would mean that the system finds that
particular gesture too ambiguous and would elect not
to classify it all instead of risking a misclassification.
No mis-classifications occurred for this initial experi-
ment.

To illustrate an example of the amount of variation
between gestures of the same type, Figure 3 shows
the likelihood values from testing 100 different in-
stances of a Grab Object gesture. The four connect
line graphs represent all four of the HMMs stored in
the system. The top-most set of points (denoted by
"+’ symbols) represents the likelihood returned from
the HMM trained to recognize the Grab Object ges-
ture. The other three set of points represent the like-
lihood returns from the other gestures. According to
Table 2, every value for P(O|);) correctly classifies
the data, even though the log of the probability val-
ues returned from the Forward-Backward algorithm
fluctuates between -50 and -100.

The calculation of the confidence values over the
same set of gestures and HMMs is shown in Figure 4.
As in the previous figure, the data returned from the
HMM that was trained on the Grab Object (once
again delimited by a +’) has a much higher value than
the three other HMMs. However, there are gestures



Gesture PO|N) | C;
Grab Object 100% | 94%
Drop Object 100% | 92%

Move Towards Object 100% | 97%
Move Away from Object 100% | 99%

Table 2: Success rate for classification of gestures

in this sequence which the system is not very confi-
dent about, C; < Zk#j Cy, and thus the percentage
correct classification for the confidence factor is only

94%.
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Figure 3: Calculation of P(O|);) for all four HMMs,
using the gesture data from Grab Object

5.2 Initial System Demonstration

Having proven that the recognition system was rea-
sonably robust, the whole system was put through a
preliminary test. A pile of boxes of two different col-
ors was assembled and placed in the center of a room.
The task for the robot was to sort the boxes into to
separate piles by observing a human do it first, as seen
in Figure 5. The robot successfully learned each of the
gestures and was then able to complete the entire sort-
ing task by continuously applying the sequence of ges-
tures that it had originally learned from the human.
Even though the conditions for the test were overly
simplified and the test itself was somewhat contrived,
the initial results were encouraging.
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Figure 4: Calculation of C; for all four HMMs, using
the gesture data from Grab Object

Figure 5: Training the robot to sort blocks

6 Summary and Conclusions

A demonstration-based programming system was
developed which allows a human to train a robot on
a task by performing a series of actions or gestures.
By demonstrating the actions for the robot, the hu-
man can let the robot extract relevant parameters for
the task (such as the Cartesian position where the ac-
tion should take place). The robot follows the human
around the environment and tries to be as unobtru-
sive as possible so as to let the human complete its
task. The robot provides feedback to the human when
it fails to recognize a gesture so that the human can
know to re-demonstrate the task.

A set of simple gestures and corresponding actions
was defined and implemented on a mobile robot. The
gesture-recognition system was tested and found to



be reasonably robust in its classification of gestures.
The whole system was put through a preliminary test,
and the results and outlook for the system are very
encouraging.

7 Future Work

The first extension will be to develop more gestures
which involve more than just the visual system of the
robot. There is a rich set of information that can be
obtained from using the robot’s other sensors such as
its sonars and bumpers. By fusing this information
with the visual gesture data, more powerful and de-
scriptive gestures can be developed to describe more
complicated tasks.

An interesting departure from strictly human to
robot gesture recognition is that of robot to robot
gesture/action recognition. If a single robot is pro-
grammed with a particular task and executes it, an-
other robot could be programmed with that task sim-
ply by watching the first one. In teams of robots where
there are many parallel tasks that must be done, two
specific classes of robots could be used: specialists and
floaters. The specialists would be programmed ahead
of time to do a particular task, while the floaters would
move about and assist the specialists as needed. The
floaters would observe the specialists doing their tasks
and then be able to assist them appropriately. Once
the floaters were no longer needed, they would move
off to find another specialist to assist. Future exten-
sions of this work will take this scenario and others
like it into account.
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