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Abstract— This paper addresses the problem of local-
ization and map construction by a mobile robot in an
indoor environment. Instead of trying to build high-fidelity
geometric maps, we focus on constructing topological maps
as they are less sensitive to poor odometry estimates and
position errors. We propose a method for incrementally
building topological maps for a robot which uses a panoramic
camera to obtain images at various locations along its path
and uses the features it tracks in the images to update the
topological map. The method is very general and does not
require the environment to have uniquely distinctive features.

I. I NTRODUCTION

We are interested in building maps using robots that
are very small and have limited sensing. Since the robot
must physically carry any sensors that it will use, laser
range finders or stereo camera systems are generally too
large for small robot systems. Miniature robots typically
have extremely poor odometry. Slight differences in the
speeds of the wheels and small debris or irregularities
on the ground will greatly degrade the performance of
any dead-reckoning position estimate. This makes accurate
localization or mapping very difficult.

Any method for map construction and/or localization
must take into account the large amount of error in the
robot’s sensing and odometric capabilities. We propose
the construction of a topological map where each node
represents a location the robot visited and took a sensor
reading of its surroundings. Initially, the map will contain
a node for each sensor snapshot that the robot acquired.
Thus, if the robot has traversed the same location more
than once, there will be multiple nodes in the map for a
single location. To identify such nodes, Markov localiza-
tion [4] is used to determine the probability of the robot’s
position at each timestep. These nodes must be combined
in order to generate a map which correctly matches the
topology of the environment.

As individual nodes are merged, the structure of the
map will change and the relative distances and headings
between each of the nodes will be affected. When a pair
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of nodes is merged, the map must find a stable energy
configuration so that each of the local displacements be-
tween the nodes is maintained properly. A useful analogy
to this problem is a physics-based model mass and spring
system. Linear distances between each of the nodes can be
represented as linear springs while rotational differences
between nodes can be represented as torsional springs.
The spring constants capture the certainty in the odom-
etry estimates. Stiff springs represent high measurement
certainty while loose springs represent low certainty.

Sensor data are obtained from monocular panoramic
images of the robot’s surroundings. TheKanade-Lucas-
Tomasi(KLT) feature tracking algorithm [11], [14] is used
to extract and match visual features from the images.

II. RELATED WORK

Physics-based models that involve spring dynamics
have been used quite effectively to find minimum energy
states [3], [6]. The work most similar to ours is by
Andrew Howardet al. [7]. They use spring models to
localize mobile robots equipped with laser range finders.
All of the landmarks used in their work are unique, and
precise distances to objects are identified using the range
finders. In contrast, we only assume we have bearing
readings to landmarks and that the landmarks may not
be distinguishable.

In [16], a map is learned ahead of time by repre-
senting each image by its principle components (using
PCA). Kröse et al. [10] built a probabilistic model for
appearance-based robot localization using features ob-
tained by Principal Component Analysis. In [15], a series
of images from an omnicamera is used to construct a
topological map of an environment. A color “signature”
of the environment is calculated using color histograms.

We use the KLT algorithm to identify and track features.
Lucas and Kanade [11] proposed a registration algorithm
that makes it possible to find the best match between
two images. Tomasi and Kanade [14] proposed a feature
selection rule which is optimum for the associated tracker
under pure translation between subsequent images. We use
an implementation of this feature selection and tracking
algorithm to detect features in the environment [9].
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III. L OCALIZATION AND MAP CONSTRUCTION

We are interested in constructing a spatial representation
from a set of observations that is topologically consistent
with the positions in the environment where those obser-
vations were made. The goal is to reduce the number of
nodes in the map such that only one node exists for each
location the robot visited and where it took an image.

More formally, letD be the set of all unique locations
(di) the robot visited. LetS be the set of all sensor
readings that are obtained by the robot at those position.
Each sti ∈ S represents a single sensor reading taken
at a particular locationdi at time t. If the robot never
traveled to the same location twice, then|D| = |S| (the
cardinality of the sets is the same). However, if the robot
visits a particular locationdi more than once, then|D| <
|S| because multiple sensor readings (stmi ,stni ,...) were
taken at that location. The problem then is to determine
from the sensor readings and the sense of self-motion
which locations inD are the same. Once identified, these
locations are merged in order to create a more accurate
map.

When using small, resource-limited miniature robots,
there are several assumptions about the hardware and the
environment that must be made. First, we assume that the
robot will operate in an indoor environment where it only
has to keep track of its 2D position and orientation. This is
primarily a time-saving assumption which is valid because
(for the most part) very small robots can only be used on
flat surfaces.

We also assume that the robot is capable of sensing the
bearings of landmarks around it. This is a valid assumption
for small robots (on the order of5 cm on a side) because
the cameras and omnidirectional mirrors can be made
quite small [2]. Finally, we assume that the robot has no
initial map of its environment and that the mechanism by
which it explores its environment is irrelevant (it might
be randomly wandering in an autonomous fashion, or it
might be completely teleoperated).

As the robot moves, it keeps track of its rotational and
translational displacements. The assumption is that the
robot moves in a simplified “radial” [5] fashion where
pure rotations are followed by straight-line translations.
This is not an accurate representation of the robot’s motion
because the robot will encounter rotational motion while
translating, however in practice we have found that we
can discount this for small linear motions.

A. Spring-Based Modeling of Robot Motion

Following each motion, a reading from the robots
sensors is obtained. This sequence of motions and sensor
observations can be represented as a graph where each
node initially has at most two edges attached to it, forming
a single chain (or a tree with no branches). The edges
represent the translational and the rotational displacement.
This can be visualized using the analogy of a physics-
based model consisting of masses and springs. In this
model, translational displacements in the robot’s position

can be represented as linear springs and rotational dis-
placements can be represented as torsional springs. The
uncertainty in the robot’s positional measurements can
be represented as the spring constants. For example, if
the robot were equipped with high precision odometry
sensors, the stiffness in the springs would be very high.

By representing the locations as masses and the dis-
tances between those locations as springs, a formulation
for how well the model corresponds to the data can be
expressed as the potential energy of the system. The
Maximum-Likelihood Estimate (MLE) of the set of all
sensor readingsS given the model of the environmentM
can be expressed asP (S|M) =

∏
s∈S P (s|M).

By taking the negative log likelihood of the mea-
surements, the problem goes from trying to maximize a
function to minimizing one. Additionally, by expressing
the allowable compressions of the spring as a normal
probability distribution (i.e., the probability is maximized
when the spring is at its resting state), the log likelihood
of the analytical expression for a Gaussian distribution is
the same as the potential energy equation for a spring, or
−log(P (s|M)) = 1

2 (e− ê)2k.
In this formulation,e is the current elongation of the

spring, ê is the relaxation length of the spring andk
is the spring constant. In order to minimize the energy
in the system, direct numerical simulation based on the
equations of motion can be employed. Figure 1 shows a
simple example of how the linear and torsional springs
are used to represent the difference between the current
model and the robot’s sensor measurements.

Fig. 1. Examples of relative poses of the robot connected by linear and
torsional springs. Locations of sensor readings, lengths of linear robot
translation and angles of robot rotation are represented asdi, ej , and
φk, respectively.

When the sensor readings of two nodes are similar
enough to be classified as a single node, the algorithm
will attempt to merge them into a single location. This
will increase the complexity of the graph by increasing
the number of edges attached to each node. This will also
apply additional tension to all of the other springs and the
structure will converge to a new equilibrium point.

If the landmarks observed at each location are unique,
such as in the work of Howardet al., then the task of
matching two nodes which represent the same locations
is fairly straightforward. However, in real world situations
and environments, this is extremely unlikely to occur.
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Without pre-marking the environment and/or without ex-
tremely good a priori information, the robots cannot
assume to be able to uniquely identify each location.

B. Map Construction

Markov Localization will compute, for each timestep,
a distribution which shows the probability of the robot’s
position across all nodes at a particular time. In cases
where the probability distribution is multi-modal, or where
it is nearly equally likely that the robot was in more than
one node at a time, there exists a good chance that those
nodes are actually a single node that the robot has visited
multiple times. The hypothesis with the highest probability
of match from all of the timesteps is selected and those
nodes are merged. Merging nodes distorts the model and
increases the potential energy of the system. The system
then attempts to relax to a new state of minimum energy. If
this new state’s potential energy value is too high, then the
likelihood that the hypothesis was a correct one is very low
and must be discarded. This process runs through several
iterations until it convergences on the most topologically-
consistent map of the environment. This iterative process
is similar in spirit to the algorithm proposed by Thrun
et al. [13]. Since this algorithm relies on local search to
find nodes to merge, there is no guarantee that the map
constructed from this algorithm will be optimal.

C. Sensor and Motion Models

The robot’s sensor model can be described as
P (st|Lt,M). This is an expression for the probability
that at timet, the robot’s sensors obtain the readingst

given that the estimate for the robot’s position is given
by the probability distributionLt. One way to generate
this distribution is through a non-parametric method such
as Parzen windows (a similar approach is used by [10]).
Following the definition of conditional probabilities, the
equation for the sensor model can be described as:

P
(
st|Lt,M

)
=
P (st, Lt,M)
P (Lt,M)

=
1
N

∑N
n=1 gs (st − stn) gd (dt − dtn)

1
N

∑N
n=1 gd(dt − dtn)

wheregs andgd are Gaussian kernels. The value(st − stn)
represents the difference between two sensor snapshots
and is described in Section IV-A below. The value
(dt − dtn) represents the shortest path between two nodes.

Similarly, the robot’s motion model can be expressed
asP

(
L(t+1)|s(t), L(t)

)
, which represents the probability

that the robot is in locationL(t+1) at time t + 1 given
that its odometry registered readings(t) after moving from
locationL(t) at time t. This is represented as:

P
(
L(t+1)|s(t), L(t)

)
= ge(e− ê)gφ(φ− φ̂)

wheree andφ represent the linear and torsional compo-
nents of the robot’s motion in the current map andê and
φ̂ represent the originally measured values.

IV. REAL-WORLD VALIDATION

In order to determine the effectiveness of the KLT
algorithm for localizing the robot, two separate experi-
ments were performed. The first was a localization-only
experiment where the KLT algorithm was used in two
different ways. The second combined the KLT algorithm
with the spring system to test the ability of the MLE
algorithm to converge to a topologically-consistent map.

A. Visual Features

Localization is done by matching features extracted
from visual images. To compare images, two different
metrics were tried: (1) static feature matching and (2)
feature tracking.

In the feature matchingapproach, features are selected
in each histogram normalized image using the KLT algo-
rithm. The Undirected Hausdorff metric H(A,B)[8] was
used to compute the difference between the two sets. Since
this metric is sensitive to outliers, we used the generalized
undirected Hausdorff metric and looked for thek-th best
match (rather than just the overall best match), wherek
was set to 12. This is defined as:

H(A,B) = max
kth

(h(A,B), h(B,A))

h(A,B) = max
a∈A

min
b∈B
‖ ai − bj ‖

whereA = {a1, a2, ..., am} andB = {b1, b2, ..., bn}, are
two feature sets. Each feature corresponds to a 7x7 pixel
window (the size of which was recommended in [14]) and
‖ ai−bj ‖ corresponds to the sum of the pixel differences.

In the feature tracking approach, KLT features are
selected from each of the images and are tracked from
one image to the next taking into account a small amount
of translation. The degree of match is the number of
features successfully tracked from one image to the next.
Each approach has different advantages and disadvantages.
Extracting features using the KLT algorithm but not ac-
counting for the translation of the feature from one image
to the next has the advantage of being faster and requiring
less memory than using the associated tracker. However,
it is likely to be less precise due to the fact that there is
no model for how the features move in the images.

A total of 15 features are selected from each image and
used for comparison. To take into account the possibility
that two panoramic images might correspond to the same
location but differ in rotation, the test image was rotated
to eight different angles to find the best match.

B. Image-Based Localization Experiments

A set 26 of panoramic images were obtained in an
office environment. shown in Figure 2. The dotted lines
show the outline of the office and the furniture within it
while the solid lines show the path along which the images
were taken. Images were taken at1.07 m increments by a
panoramic camera mounted on the back of a Pioneer 2 [1]
mobile robot. The KLT feature matcher was used to extract
features from panoramic images. Figure 3 shows a set of
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Fig. 2. Map of the office environment where our tests were conducted. The nodes of the robot’s training path are shown with triangles.

Fig. 3. The 50 best features selected with the KLT feature selector on a panoramic image. In our experiments, only the 15 best features were used.

features obtained by applying the feature matcher to a
panoramic image. As can be seen, features corresponding
to corners and prominent edges are selected.

Two sets of test images were acquired along the paths
shown in Figure 4(a) and Figure 4(b). Triangles show
the positions of the original test set of images. Circled
arrows show the positions of the images taken for the test
sets. The images in the first test set were mostly taken
along the original path from which the training set was
obtained. The images in the second set were taken in a
zig-zag pattern that moved mostly perpendicular to the
path of the training set. Table I illustrates the performance
of the two vision algorithms on the different sets of
data. The average distance error is the average Euclidean
distance between the correct position and the reported
position. The second metric is the number of position
matches that reported multiple possible positions of the
robot with equal certainty (caused by perceptual aliasing).
The correct position to be attributed to a test position is
assumed to be the nearest position (by Euclidean distance)
of the reference path. When multiple position estimates
are available, the worst possible position is used. The
reason that the tracker had multiple position estimates
when the matcher did not was due to the scale difference
in the error metrics. The tracker computed the number
of features that matched between images which could
range between[0 − 15]. The feature matcher compared
the difference in pixel image intensity which could range
between[0−12495]. The tracker was thus far more likely

to have cases where multiple locations had the same
matching score.

Test set 1 Test set 2
Error Feature Feature Feature Feature
metric matcher tracker matcher tracker

Ave. distance 1.58 0.51 2.97 1.34
in meters

Number of multiple 0 1 0 6
position estimates

TABLE I

Average errors for the tests.

As can be seen from the results, the static KLT feature
matching algorithm was worse at finding the best match
between an image in the test set and the image in the
training set. When the training and test images are nearly
identical (taken from virtually the same location in space),
the static feature matcher was very good at finding the
correct match. However, as the spatial difference between
the images increases, the resulting match rapidly degrades.
The feature tracking algorithm did a much better job of
matching images in the test set to the training set. This
algorithm was much better at handling changes in feature
position caused by the motion of the robot since it takes
into account the translational motion of the features in the
image. Unfortunately, the KLT feature tracking algorithm
is much more complex in terms of computing time and
memory/storage requirements.
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(a) Images for test 1 set were taken in between reference positions along the path.

(b) Images for test 2 were taken on a zigzag path across the training path.

Fig. 4. Paths in the environment where our tests were conducted. The training positions are labeled with triangles and the test positions are labeled
with circled wedges. The heading of the robot at each node is shown by the direction of the triangle or wedge.

C. Mapping Experiment

The set of training images taken in the previous ex-
periments were used to test the MLE map construction
algorithm. Noisy odometry estimates were assigned to
each of the paths between images in the training set.
The KLT feature tracking algorithm was used to compare
features in pairs of images and only the training set of
images was used. This corresponds to the case where a
robot explored an unknown environment. As the robot
explores, it attempts to find the most likely structure by
merging nodes from its map which appear to correspond
to the same sensor data.

Figure 5 illustrates the process of how the algorithm
works. The original data reflects the errors in the odomet-
ric readings of the robot. In Step 1, Markov localization
identifies a high probability of the robot’s position in nodes
at timestep 6 and 19. These two are merged and the spring
model is allowed to relax. In Step 2, Markov localization
is run again on the map and nodes 11 and 14 are merged.
By this point, the map has obtained a shape that better

matches the topology of the environment. Each possible
merge candidate is evaluated by how the merge affects the
entropy of the pose distribution. Bad merges will create
inconsistent topological structures and have a tendency to
increase the robot’s pose entropy. This means that it is
less sure of its position in the environment.

V. FUTURE WORK

We ultimately plan to use this technique to localize
miniature robots, called Scouts, using images taken from
their cameras. The Scout robot, developed at the Cen-
ter for Distributed Robotics of the University of Min-
nesota [12], is a differentially-driven cylindrical robots
(11 cm in length and4 cm in diameter) equipped with a
single monocular camera. Their small size restricts them
to off-board processing of their video signals.

The mapping algorithm has been found to be very
sensitive to certain parameters. The spring and dampening
constants used by the spring convergence step must be
selected carefully to ensure convergence. To address this,
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Initial configuration Iteration 1 Iteration 2 (final)

Fig. 5. Several iterations of the convergence algorithm. Circled nodes are to be merged in the next iteration. Only the accepted node merge candidates
are shown in this example. Node merge candidates that increased the entropy of the pose distribution (and thus were rejected) are not shown. After
iteration 2, all other node merge pairs were rejected.

other methods being examined include weighted least
squares and the Kalman filter. Another parameter that
could affect the performance of the localization algorithm
are the widths of the Gaussian distributions used in the
Parzen windows. Empirical studies are being done to
determine good values for these parameters. Finally, the
entropy of the pose distribution is used as a method for
tracking the progress of the algorithm. More robust meth-
ods, such as stochastic sampling, are under development.
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