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Abstract— In this paper , we make two contr ibutions. First, we
present   a new domain, called Segway Soccer , for  investigating
the coordination  of  dynamically  formed,  mixed  human-robot
teams within the realm of  a team task  that  requires real-time
decision making and response. Segway Soccer  is a game of soccer
between  two teams consisting of  Segway  riding humans and
Segway RMP-based robots. We believe Segway Soccer  is the first
game involving both humans and robots in cooperative roles and
with similar   capabilities. In conjunction with this new domain,
we present our  work towards developing a soccer  playing robot
using the Segway  RMP platform  and  vision  as its primary
sensing modality. As Segway Soccer  is set  in the outdoors, we
have developed novel  vision algor ithms to adapt  to changes in
lighting conditions. We present the domain of Segway Soccer , its
inherent challenges, and our work towards this goal.
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I.  INTRODUCTION 

There has been considerable research into both human-
robot  interaction  [12],  and  multi-agent  teams  [8,9,10].
Additionally, since the inception of RoboCup robot soccer [2],
there has been considerable research into multi-robot  teams
operating in adversarial  environments.  To our  knowledge,
however, there has been no work to date that combines these
attributes; namely, to examine human-robot interaction within
an adversarial, multi-robot setting where humans and robots
are team members with similar  capabilities and no clear role
hierarchy. 

We are developing a new game, which we call  Segway
Soccer, that aims to fill  this void. Segway Soccer is a game
that requires mixed teams of  humans and robots to cooperate
to achieve the maximum reward in an adversarial  task. To
ensure interesting cooperation, both humans and robots are
equipped with similar capabilities. We achieve this difficult
task by requiring that both humans and robots use the same
drive platform – the Segway platform developed by Segway
LLC (Figure 1).

Our goal  is to create a task that requires advanced robot
intelligence,  combined with robust  human-robot  interaction
skills. We hope to extend the powerful aspects of RoboCup –
competition, an adversarial domain requiring fast decisions, a
well  understood  task  –  to  incorporate  human-robot
interaction. The need for this new domain lies in the lack of

study for human-robot interaction where decisions need to be
made quickly. As robots become more integrated into society,
they  will  inevitably  have to  interact  with  humans and/or
legacy  robots in complex  tasks.  For  some of  these tasks,
decisions may need to be made quickly  and roles of  both
humans and robots may not be clearly defined a priori. 

Figure 1. The Segway RMP (left and right) and Segway HT (right) platforms
developed by Segway LLC (http://www.segway.com).

In this paper, we describe our work towards developing a
robot capable of  participating in Segway Soccer. As this new
domain is set  in  the outdoors,  compensating for  variable
lighting conditions and less structured environments, but still
retaining the ability to make and act on decisions quickly is a
challenging task. We describe our initial solutions to meet this
challenge.

The format of  the paper is as follows.  In Section II, we
describe the specifics of  Segway Soccer; its rules, structure,
goals,  and challenges.  Section III  describes our  proof  of
concept, a soccer playing Segway RMP, which uses vision as
its primary sensing modality. Finally, we conclude in section
IV and present our on-going work.

II.SEGWAY SOCCER

In this section, we concretely describe the rules of Segway
Soccer and the common hardware platforms used. We begin
by describing the rules of the game of Segway soccer.

The Game

Segway Soccer is a game between two teams playing on a
grass field in an outdoor environment with an orange, size 4
soccer ball. Teams can consist of humans, robots, or a mix of
humans and robots. Figure 2 shows the field structure. The
field consists of  a grass surface in an outdoor environment.
White tubular markers are placed around the field to indicate
the field boundary.  Each goal  is uniquely  colored and is
delimited by two posts. A human referee maintains control ofThis research was sponsored by the United States Army under Grant No.
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humans using the Segway platform, and an orange size 4 soccer ball.

The field dimensions follow a scale law as a function of
the number of players on the field. For n players on each team
the field dimensions can be calculated as:

length �
n
11

� 100m , width �
n
11

� 60m (1)

As both Segway HT's and RMP's carry considerable mass,
and are able to reach speeds of  8mph or greater, safety is a
primary concern. To address this problem, the game follows a
flow more familiar to Ultimate Frisbee1. When play begins,
ball  possession is decided with a coin  toss.   Afterwards,
players gain possession based on proximity to the ball  when it
is “ f ree” .  Once a player obtains possession, opponents are not
allowed to contest the ball thereby preventing any unnecessary
contact.  Players are also not allowed to move with the ball
(dribble), and instead must pass the ball to one another for the
team to maintain possession. A time limit will  be enforced on
how long possession can be maintained by  a single player
before the ball  must  be passed on to  a teammate before
possession is overturned.  When the ball  is passed, the first
player on any team to come within a specific distance of  the
ball  will  gain possession.  The same player cannot re-aquire
possession of  the ball  until  after another player has obtained
possession.  Possession is also changed if the ball is kicked out
of  bounds or if  a goal is scored.  Although primarily a safety
measure, this rule also ensures that players must pass the ball
to advance. As a direct consequence teamwork, rather than
purely  single robot  skills,  becomes essential.  The goal  of
exploring intelligent teamwork is therefore achieved.

Although the rules defined thus far allow for a multi-agent,
adversarial  game to be played, they  do necessarily  enforce
human-robot  interaction.  If,  for  example,  humans prove
considerably  more capable than their  robot  teammates, one
can expect  humans to dominate possession leading to little
human-robot  interaction opportunities.  Should robots prove
more capable than their human brethren, the reverse situation

1 Rules for Ultimate Frisbee can be found at: http://www.upa.org

happens.  Either  case is undesirable.  Our  solution  to  this
problem is to require that both a human and a robot be part of
the sequence of  passes leading to a goal score. How effective
this solution is, remains to be seen.

Segway RMP as a Platform for Robotics Research

The Segway  platforms,  invented by  Dean Kamen,  are
unique in their  combination of  wheeled dynamic balancing
mobility. The human ridable Segway HT has two separately
driven  wheels and  on-board  computation  that  allows the
platform to dynamically balance when a human is standing on
it. The human rider controls the forward/backward velocity of
the Segway by leaning forward to accelerate or backwards to
decelerate. To turn, the rider twists a handle grip to turn in one
direction  or  the other.  This combination  of  controls are
surprisingly easy to master even for the most novice of riders.

The Segway  RMP, or  Robot  Mobility  Platform, is the
focus of  this paper. The RMP consists of  a Segway HT that
has been modified by Segway LLC, to provide an extensible
robot control platform. Figure 1 shows the Segway RMP and
HT. The RMP consists of  three modifications to the base HT
platform. First, a CAN Bus interface is  exposed to enable two
way, high speed electronic communication with the platform.
Second, the Segway's control software is modified to enable a
computer to send direct velocity commands to the platform.
The third change is to attach a large mass of  approximately
50lbs at a height of  about 50cm from the robot wheel  base.
This mass,  consisting of  multiple steel  plates,  serves the
purpose of  raising  the robot's center  of  gravity.  This is
necessary to slow down the rate of falling over for the robot to
enable Segway's control  loop  to  operate effectively  at  a
realizable frequency. 

Commands to the Segway RMP can either cause the robot
to move or modify the general operation characteristics of the
robot. Motion commands have a speed-rotation format of  (v,
ω)T, where v   is the forward velocity and ω is the rotational
velocity. These commands act as set points for the Segway
RMP's PID  control  loop.  The control  loop  is a position
controlled,  meaning  the robot  will  continue to  move as
commanded until  it reduces the position error to zero or the
PID  integrators are reset.  The additional  commands can
disable the Segway, reset the PID integrators, select different
gain schedules, or adjust the velocity/acceleration scales. The
different  gain  schedules  prove  useful  for  different
weight/height  arrangements.  In  addition  to  receiving
commands,  the Segway  returns status information derived
from its internal  sensors.  The state information is sent  at
100Hz and includes:

• Pitch, roll, yaw angles and rates

• Remaining battery charge

• Wheel velocity, displacement

• Forward displacement

As a platform for  robotics research the Segway  RMP
offers many unique features. First, it is a robust, extensible
platform capable of  extended operation  both in  terms of
distance traveled and in operation time in both indoors and
outdoors. Although operation distance and time depend upon



terrain  and  use,  figures of  16km  and  3  hours are not
uncommon.  The  Segway  is  able  to  move  at  speeds
considerably faster than most robotic platforms. It can carry a
significant  payload,  in  excess of  100 kg.  The mechanical
arrangement of the Segway means that sensors can be placed
to give a human perspective on the surrounding world without
compromising the robot's stability  or  maneuverability.  The
dynamic balancing gives the robot a certain measure of active
compliance, which is more than useful when collisions occur.
The one caveat to the Segway, is that  to maintain a stable
balanced operation it must remain within ±20°  of vertical. If
the robot  exceeds this limits,  it  automatically  disables its
balancing and promptly falls over. 

III.DEVELOPING A SEGWAY SOCCER PLAYER

We now describe our  work to develop a Segway RMP
robot base capable of  playing Segway Soccer. To build any
autonomous robot,  one must  develop  a  complete  system
involving  perception,  cognition,  and action.  We begin by
presenting  an  overview  of  our  approach,  followed  by  a
detailed discussion of  the vision, skill  learning, development
environment, and hardware. 

Figure 3. The control  hierarchy used for the robot. The gray modules are the
perception-cognition-action part of the system. The white are development

infrastructure aids. Xdriver is a teleoperation program.

Overview

Figure 3 shows the complete control  architecture for the
Segway RMP. The gray boxes show the main processing path
that makes up perception, cognition, and action. In a dynamic,
multi-robot environment, where robots are moving at speeds
approaching  3.5m/s  (8mph),  the ability  to  perceive and
respond to situations in minimum time is essential. Hence, it is
critical  to overall  robot  performance that  the control  loop
formed by gray modules operates at full  frame rate, and with
minimum  latency,  in  addition  to  executing  the  correct
command  for  each  situation.  The white boxes show  the
supporting  development  environment,  which  although  not
critical to the normal  operation of the system is critical to the
development  cycle.  Not  shown  in  this  figure  are  the
mechanical components to support ball manipulation. We now
describe each major  component  and its role in the overall
hierarchy, namely; the robot  hardware, vision and tracking,
state representation,  robot  cognition,  and the development
environment. 

Robot Hardware

Just as the control hierarchy can be broken into perception,
cognition, and action, so too can the physical  hardware be
broken into sensing,  computation,  and actuators.  Figure 4
shows the main physical  hardware components. For sensing,
the robot  uses a single color CCD camera. Specifically, the
robot uses a Phillips 690 Web camera with a wide-angle lens
providing  a Field-of-View  of  around 110°.  The camera
provides 320x240 color pixels at 30Hz in a YUV 420 planar
format.  The only  other  sensors are those internal  to  the
Segway as discussed above. For computation, two laptops are
used with one dedicated to the intensive task of  perception
procession and the other dedicated to communication with the
Segway RMP via the CAN Bus. The latter  occurs via the
Kvaser LAPCan II  PCMCIA  card. The remaining cognition
algorithms are distributed between the two laptops depending
upon computational requirements. In the current arrangement,
only motion control and interfaces with the Segway RMP and
CMU board run on the actuation laptop.

Vision was chosen as the primary  sensor  for  its high
information content,  low  cost,  and suitably  to the task  of
recognizing multiple fast moving objects in a complex world.
As cameras are now  a consumer  item and are therefore
beneficiaries of   competition in terms of  device development
and price reduction.  Thus,  for  building  teams of  robots it
makes sense to use an affordable sensor. Moreover, if suitable
algorithms can be developed to realize the vast potential  of
vision its capabilities will far outweigh any comparably priced
sensor.  We return to this discussion shortly.

The  final  component  of  the  hardware  system  is  a
mechanism for propelling the ball. Although it is possible to
propel  the ball  with a human ridable Segway through weight
transfer by swinging the feet through underneath the rider (see
figure 1), this motion is not effective with the Segway RMP
platform due to the lack of  an actuated mass decoupled from
the robot base. Instead, we require a separate mechanism for
imparting  energy  into  the  ball.  We  have  developed  a
pneumatic kicking mechanism for just this task. 

The task of ball  manipulation is to develop motions and/or
mechanisms to transfer a maximum amount of  energy to the
ball in as predictable a direction as possible. This problem has
been studied extensively  within the RoboCup robot  soccer
community  [3,9,10].  We  can  categorize  these  different
approaches  based  on  the  actuation  mechanism  into:
pneumatic, spring, motor, and solenoid based kickers. Due to
the size and power  requirements of  the robot,  a solenoid
solution is clearly  inappropriate.  Motor  based approaches,
such as the rotating bar  of  or  the driven plate of  [3,10],
although simple lack  the power  transfer  capabilities at  the
needed size or raise significant safety concerns. This leaves a
spring based solution,  or  a pneumatic one.  A  spring-based
solution has many appealing factors;  namely it  offers high
power to volume and power to weight ratios. The caveat is
that  it  requires specialized mechanical  hardware creating a
design  challenge,  and  more significantly  a  maintenance
challenge. Thus, we used a pneumatic approach due to its
simplicity and high power to weight ratio. Figure 4 shows the
main components of  the pneumatic system. Essentially, two
pistons form the drive mechanism. Two 6V actuated solenoid
valves 'actuate' the device, while the regulator and electronic

GUI XDriver

Logging/Debug Server

Vision

Robot 

Manager

Robot State

Internal State

Perception

Robot State

Internal State

World Model

Log file



switch maintain a set pressure and refill  the tank with an on-
board compressor when the pressure drops too low.

Figure 4. The main robot hardware components. The left shows the kicker
mechanism, the right shows the processing architecture.

Vision and Tracking

As described above, for this domain there are few sensors
that can compete with color vision for cost, size, information
content, and latency. Due to the size and speed of the Segway
RMP platforms,  it  is necessary  for  the robot  to  operate
predominantly outdoors on grass fields. Thus, algorithms that
are robust to changes in illumination and color variation are
needed. Unfortunately, there is a lack of vision algorithms that
provide the combination of  robustness to color illumination
and can operate at full  frame rate on a moderate processor.
Given  the  need  to  perform  all  computation  related  to
perception, cognition, and action, the need to operate in real-
time means that only a fraction of computational resources are
available for vision procession. To our knowledge, there are
no vision algorithms that offer all of these features.

A  number  of  fast,  color-based  algorithms and  freely
available source libraries have been  developed  for  static
lighting conditions. In particular, CMVision [6], is one such
library for very quickly extracting color blobs from images
that  has been widely used in RoboCup research. CMVision
operates using a fixed color  table to map from pixel  color
vectors to a symbolic color value. The actual  color table is
generated a priori  either  by  GUI  tools or  via supervised
learning algorithms. Once each pixel  in the image is mapped
to  a symbolic  color  value,  a fast  connected  component
analysis is performed. The resulting regions are then reported
allowing for higher level  recognition and tracking algorithms
to be run. Although very effective, the fixed color map means
that CMVision is unable to adapt as lighting conditions and
consequently color  values, change. For example, if  the sun
moves behind a cloud the color and luminance of  the visual
scene can change quite dramatically. 

To address this issue,  we have extended CMVision to
detect  well  contrasting objects under  variable illumination
conditions. Our algorithm extends CMVision by replacing the
pixel  labeling process with an adaptive one derived from
knowledge of  object geometry and color relative to the scene.
The complete vision algorithm works in five steps, as follows:

1. Transform the color space via vector projection

2. Build a histogram of resulting 1D pixel values

3. Analyze histogram for a peak satisfying constraints

4. Run connected components from CMVision 

5. High-level filter resulting blobs to find ball

The first part of  the process operates by projecting each
pixel  p∈(1...N)  with color  values  (yp,  up,  vp)T onto a 1D
intensity  space  via  a  normalized  dot  product  operation
commonly  found  in  image  tracking  applications  [7].
Specifically, the operation is:

Ip
� �

yp up vp ��� � a b c � T�
a
� ���

b
� ���

c
� a ,b , c 	�

� 6,. ..5 , 6 � (1)

The values for the prototype vector (a, b, c)T are selected
manually. For the orange soccer ball, a prototype of (1 -3 5) T.
Thus, the ball must be bright and red/orange in color. A global
histogram of  the resulting intensity  image is constructed,
which is then searched for the brightest peak. We developed a
simple peak  detection  algorithm  that  takes  into  account
constraints  including  a  minimum  peak  size,  and  area.
Concretely, the algorithm searches for the brightest peak 

1. Starting from p = Nmax find p such that 

Hist � p ��� pHmin , Hist � p ��� max
i � p..Nmax

Hist � i � (2)

2. Starting from m = p, find m such that

Hist � m ��� mini � m..p Hist � i � , m � p (3)

Where m and  p are indexes constrained to  {pmin,...Nmax},
Hist(i) is the histogram count for intensity i, and there are [0,
Nmax] possible intensity values (in practice Nmax = 255). The
found peak is only accepted if the area under the peak, Am,  is
within the constraints: Amin ≤ Am ≤  Amax. Thus:

Ai
���

j � i

Nmax

Hist � j � (4)

The minimum value,  m, is chosen as the threshold value
for the image. Each pixel  is then labeled using this threshold
and the components connected to form regions. A number of
high level filters are then run on the largest regions satisfying
a minimum size constraint. Each filter produces a confidence
estimate c∈[0, 1] based on known geometric properties of the
object,  and the product  of  the confidences is used as the
confidence for that region. For the ball, these estimates are the
same as for [11]; an expected bounding box size, an expected
pixel count given the boundary box size, and the shape of the
bounding box. Figure 5 shows the algorithm in action.

Figure 5. The left image shows a raw image, the right the processed result
with ball pixels labeled and a bounding box drawn around the identified ball.
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Robot Cognition

Through our previous work, we have developed a control
architecture for  multi-robot  control  in  adversarial,  highly
dynamic environments. The architecture, which we call Skills-
Tactics-Plays [5],  consists of  Skills for  low-level  control
policies,  Tactics for  high-level  single robot  behavior,  and
plays for team coordination. Here we briefly review the key
components of  skills and tactics, and then focus on the new
developments for recording skills to speed up  development.  

Skills, tactics, and plays in the STP architecture form a
control  hierarchical. Here we focus on skills and tactics that
form the components for single robot intelligence. A skill  is a
focused control policy for carrying out complex actions in the
world.  For  this task,   example skills include a particular
method to kick the ball, a technique to prepare for a kick, or a
method for  stealing the ball  from an  opponent.  A  tactic
encapsulates  a  complete  single  robot  behavior  such  as
shooting the ball  in the goal, passing, acting as a goal keeper.
Skills form the high-level  action primitives for  tactics, thus
tactics affect the world by commanding skills to execute and
passing parameters appropriately. Skills can be connected into
a finite-state-machine for a given tactic. Thus, a tactic can
perform  a  range  of  complex  actions  by  triggering  the
appropriate sequence of  skill  execution. For example to shoot
the ball  at the goal, the shoot  tactic executes a sequence of
skills such as gotoBall,  positionForKick,  and when aimed at
the target the final  kick  skill. Transitions between skills are
controlled based on the perceived state of  the world using a
decision tree.  Finally,  following the usual  behavior  based
approach [1], tactics and skills both execute in parallel  and
compute their decisions once per vision frame at 30Hz. The
tactics set the parameters for skill execution, and possibly the
executing skill, while the skill makes its decision on the world
state and generates output for the robot low-level  modules. 

Figure 6 shows the skill state machine for the shoot tactic.
To ease the complexity of  skills, we have also developed a
robot  control  module.  This module implements a motion
control  algorithm as in [4]. Additionally, we have developed
skill  recording mechanisms which we describe next. Thus, the
skills actuate the robot through the motion control module by
setting  a robot  relative way  point,  through  the  motion
playback  module,  or  by  directly  actuating the robot  (not
shown). The robot  command is sent to the Segway via the
CAN Bus.

Figure 6. The skill  state machine for the shoot tactic. Also shown is the
motion playback portion of the skill  recording mechanism.

In an adversarial  domains, the efficiency, accuracy, and
robustness of  skill  execution is a major factor in determining

robot performance. Skill  performance is a direct function of
the  robot  mechanics,  control  system,  and  the  local
environment. As such, skills do not  transfer well  from one
environment to the next, from one robot platform to another,
and from simulation to reality. Finally, as skills are inherently
tied to the low-level actions of the robot, they typically require
many  parameters to  define their  execution.  Tuning  these
parameters by hand is time consuming and error prone. Thus,
we desire  a  technique  to  enable  rapid  tuning  of  skill
parameters. 

We have developed a skill  recording system, whereby a
human operator can teach a robot a skill. The human operator
guides the robot via tele-operation through a complex motion.
The commands sent to the robot at each processing cycle are
recorded to a file,  which can then be edited manually   if
desired. The recorded commands can be played back at run
time verbatim. The result is a complex motion which can be
executed by a tactic as a skill.  

To test the validity of  this approach, we recorded a kick
motion for the Segway RMP to kick the ball. To best execute
a kick  on rough terrain,  the Segway RMP must  first  lean
forward,  drive through the ball  actuating the kicker  at  the
correct time, and then slow down to avoid running over the
ball  and robbing it  of  its momentum. Although writing an
algorithm  to  generate  such  motion  presents  only  minor
difficulty, tuning the parameters to achieve the right behavior
takes a non-negligible amount of work due to the need to test
and adjust  parameters.  In  contrast,  it  is relatively  straight
forward to provide the robot with a good example via tele-
operation  (especially  if  one is already  experienced  with
driving the robot). 

The mechanism  described  here can  only  be used  to
reproduce directly  recorded motions. There is no ability to
generalize beyond the examples it has been given. Our future
work is to extend this approach to incorporate generalization
mechanisms. With such an ability  we hope to significantly
reduce the complexity required to develop complex skills.

Development Interface

One of  the key aspects to robot development that is often
overlooked in the literature relates to the support infrastructure
to aid development.  In our  experience,  good development
infrastructure  can  greatly  ease  the  development  burden,
however, there has been no scientific study  of  what 'good'
development infrastructure is. Based on our prior experiences,
we have developed a number of  infrastructure tools for the
Segway  RMP to  aid  development.  Concretely,  we have
developed a Debug Server  and GUI  client  for  providing
contextual  text  and graphic debug information at  execution
time. We have also developed a logging/playback system to be
able to record what the robot 'sees', 'thinks', and 'does' and play
it back for later analysis. Finally, we have developed an off-
line vision testing tool  to speed up the vision development
process. We now describe in detail each of these components.

Figure 7 shows the GUI output for allowing a remote user
to view several  aspects of  the robot's sensory  and internal
state.  This is particularly useful for developing behaviors for
the robot as one can quickly see what the robot's model of the
world is.  The GUI  client  programs connect  to the Debug
server  (see  figure  3)  over  a  TCP  socket.   In  the
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RawRobotView display, the output of the vision system can be
seen and the user can use it to view the output of  the various
tracking modules.  For instance, the outputs from the ball  or
obstacle tracking modules can be directly  viewed.   Other
output interfaces, such as the RobotLocalMap, show an ego-
centric view of  the robot and show the positions of  detected
objects around it, while the RobotPoseView, shows an ego-
centric side view of the robot so that the reported tilt angle can
be visualized.  Finally, all  of  the text output generated from
the soccer server, such as debug and state information, can be
viewed on the RobotTextWindow display.

Figure 7. The GUI output showing the raw video from the Segway (top left),
the robot's state real-time information (top right), the robot's local world

model  (bottom left), and a graphic of the robot state (bottom right). The GUI
may connect to the robot 'live' or to a log player for off-line analysis.

The Logging server  allows the Segway  to  record  all
sensor and state information at a configurable rate, so that it
can be analyzed off-line as well  as replayed. The latter  is
especially  useful  given the speed of  action and the large
information  content.  The user  can  request  a number  of
different sensor channels to log, where these might be all  of
the robot's pose and velocity state information, the raw video,
the segmented video,  or  even the specific positions of  the
tracked targets (ball  and players).  Logging all  of  the raw
video data along with all  of  the robot  state information is
fairly  processor  intensive and is not  typically  done unless
there is a specific need for it.

In order to test and debug the video processing algorithms,
the raw frames of  video can be loaded into a vtest  program
which will process each frame using all of the Segway's video
processing code.  This is particularly useful for gathering large
amounts of  video data for  testing purposes.  The robot  can
simply be tele-operated around the environments where it will
be expected to operate, and new video processing code can be
tested without having to drive the robot.

IV.SUMMARY AND FUTURE WORK

The Segway RMP and HT present  a new and exciting
robotics research platform. Based on this platform we have
devised a new domain called Segway Soccer for investigating
human-robot  interaction within the confines of  a real-time,
adversarial  task.  We  have  developed  the  single  robot
capabilities  to  control  a  Segway  RMP  in  an  outdoor

environment. Specifically, we have developed robust outdoor
vision, a skill-tactic-play control  hierarchy, and infrastructure
to support  skill  training,  logging, and playback.  All  of  the
algorithms described here have been fully implemented on the
Segway RMP and run in real-time at  the full  frame rate of
30Hz.  Using  these algorithms the robot  can  successfully
perform a shoot tactic in an outdoor environment with variable
lighting. We have made available videos of the robot in action,
including videos derived from the robot  vision logs.  We
encourage interested readers to download videos of  the robot
operating at  http://www.cs.cmu.edu/~robosoccer/segway. Our
future work will focus on extending the behavior repertoire of
the robot and moving towards mixed human-robot teams.
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