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Abstract— This paper presents a monocular vision based 3D
bicycle tracking framework for intelligent vehicles based on a
detection method exploiting a deformable part model and a
tracking method using an Interacting Multiple Model (IMM)
algorithm. Bicycle tracking is important because bicycles share
the road with vehicles and can move at comparable speeds
in urban environments. From a computer vision standpoint,
bicycle detection is challenging as bicycle’s appearance can
change dramatically between viewpoints and a person riding
on the bicycle is a non-rigid object. To this end, we present
a tracking-by-detection method to detect and track bicycles
that takes into account these difficult issues. First, a mixture
model of multiple viewpoints is defined and trained via a
Latent Support Vector Machine (LSVM) to detect bicycles
under a variety of circumstances. Each model uses a part-
based representation. This robust bicycle detector provides a
series of measurements (i.e., bounding boxes) in the context of
the Kalman filter. Second, to exploit the unique characteristics
of bicycle tracking, two motion models based on bicycle’s
kinematics are fused using an IMM algorithm. For each
motion model, an extended Kalman filter (EKF) is used to
estimate the position and velocity of a bicycle in the vehicle
coordinates. Finally, a single bicycle tracking method using an
IMM algorithm is extended to that of multiple bicycle tracking
by incorporating a Rao-Blackwellized Particle Filter which runs
a particle filter for a data association and an IMM filter for
each bicycle tracking. We demonstrate the effectiveness of this
approach through a series of experiments run on a new bicycle
dataset captured from a vehicle-mounted camera.

I. INTRODUCTION

One of the ultimate goals in the automotive industry is

to develop fully autonomous driving vehicles. One of key

subsystems for achieving this goal is a robust perception

system that will allow the vehicle to understand its current

environment for the safety of people inside and outside of the

vehicle [11]. Such a perception system must be able to detect

and track other traffic participants such as cars as well as the

class of objects called vulnerable road users (VRUs) [13]

which includes entities such as bicyclists, motorcyclists,

and pedestrians. For this purpose, we have been using the

autonomous car “Boss” which won the 2007 DARPA Urban

Challenge [7] as a test platform.

In this paper, we focus on the problem of identifying

and extracting specific quantities of interest from the scene.

We use the roof-mounted cameras on Boss to detect and

track bicycles. Bicycles are a particularly challenging for an
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Fig. 1. Typical examples of our bicycle tracking system. A tracking result
within (beyond) a certain distance (i.e., 8m) is visualized with a 3D (2D)
bounding box. A text box syntax is {viewpoint (x coordinate, z coordinate)}.
A set of points under a bounding box visualizes the uncertainty of tracking.

autonomous vehicle to track due to the fact that they are as

unprotected as pedestrians but travel at higher speeds in very

close proximity to vehicles. We have found that research into

detecting and tracking bicycles for safety purposes shares a

lot of similarities to detecting and tracking pedestrians but

we believe the bicycle domain is more difficult than the

pedestrian domain for two reasons. First, bicycles can change

their appearances very drastically based on the viewing

angle. Second, the relative speed of bicycles traveling on

roads means that they can change their size and appearance

in the camera’s view in a very short time. Figure 1 shows

some typical results of our bicycle tracking system.

While other technologies such as LIDAR and RADAR are

available to autonomous vehicles and all of these different

technologies (including various combinations and fusion

approaches) have been employed in various ways by other

researchers [12], we are primarily considering the challenge

of using a vision system to detect and track bicycles.

Cameras and computer vision systems have a number of

benefits as well as difficulties that must be contended with

in order to be useful. On one hand, vision systems provide

a high-resolution view of the world as compared to planar

LIDAR or low-resolution scanning RADAR. Additionally,

features such as color, texture, shape, and contours can all

be extracted from vision systems which are unavailable to

those other sensors. Another practical benefit of cameras



is the relatively low cost of the sensor itself compared to

LIDAR and RADAR. On the other hand, because the FOV of

vision systems subtends a large area, objects of interest must

be extracted from potentially complex backgrounds before

they can be processed. Variations in lighting, object size,

shape, and so forth mean that vision systems may be able

to recognize a target in one set of conditions but may fail to

recognize them in other situations.

The first contribution of this paper is that given a three-

component bicycle model we built in our previous work [3],

we exploit the unique characteristics of bicycle tracking.

Clearly, bicycles do have their own kinematics and, in

consequence, have more restrict constraints on their motion

compared to that of pedestrians. We choose two motion

models based on simplified bicycle’s kinematics and fused

them using a well-known IMM estimator. For each motion

model, an extended Kalman filter (EKF) is used to estimate

the position and orientation of a bicycle in the vehicle

coordinates, hence 3D localization is possible with a proper

scaling reasoning. The second contribution is the extension of

the single bicycle tracking method to that of multiple bicycle

tracking by incorporating a Rao-Blackwellized Particle Filter

which runs a particle filter for data association and an IMM

filter for each bicycle tracking. The final contribution of the

paper is a new well-designed bicycle dataset which was made

public for encouraging bicycle tracking research. The dataset

is unique in that it is the first public domain bicycle dataset

to our best knowledge. The dataset is valuable in terms of

automotive applications in that it was collected based on the

bicycle accident statistics [14].

The remainder of this paper is organized as follows.

Section II reviews related work on detection and tracking of

pedestrians. Our primary technical contributions in detection

and tracking are described in Sections III and IV, respec-

tively. We describe experimental results using the system in

Section V and conclude in Section VI.

II. RELATED WORK

Pedestrian Detection: There is a significant body of work

on vision-based approaches for pedestrian detection. For a

comprehensive survey of classical work, please see [12]

and [16] while more recent work is surveyed in [11], [6],

[5]. For the detection of pedestrians, there are roughly

two main approaches: single template and part-based. This

classification is based on representation of a human body re-

gardless of features and classifiers used. Historically, a single

template based approach was studied first and showed better

performance compared to part-based models. Recently, how-

ever, some part-based models have shown more promising

performance while they have a flexible and rich model. In a

single template approach, the model captures a whole human

body pattern using a single detection window. Papageorgiou

et al. [18] uses Haar wavelet features in combination with

a polynomial Support Vector Machine (SVM). Viola et al.

[21] augment space-time information to their simple Haar-

like wavelet features for moving people detection. Dalal and

Trigg [4] show excellent performance for detecting human in

a static image using a dense HOG (Histogram of Oriented

Gradient) representation and a linear SVM. On the other

hand, a part-based approach captures the pattern of each

part and then combines results to make a final decision for

pedestrian detection. Generally, part-based approaches can

handle varying appearances of pedestrians due to clothing,

pose, and occlusion, and thus, provide a more complex

model for a pedestrian detection problem. Mohan et al. [18]

divide human body into four parts: head, legs, left, and right

arm. Each part detector is trained using a polynomial SVM

and outputs are fed into a final classifier after checking

geometric plausibility. Mikolajczyk et al. [17] model humans

as assemblies of parts that are represented by the Scale

Invariant Feature Transform (SIFT)-like orientation features.

Felzenszwalb et al [9] demonstrate that a part-based model

human detector can outperform many of existing current

single template based approaches. Based on a variation of

HOG features, they introduce a latent SVM formulation

for training a part-based model from overall bounding box

information without part location labels.

Pedestrian Tracking: For tracking of pedestrians, a

number of mathematical frameworks have been proposed.

Statistical or probabilistic methods such as the (extended)

Kalman filter and particle filter are often employed. For

instance, one such approach [13] uses an α − β filter to

overcome gaps in detection where the proposed tracker is a

simplified Kalman filter with a constant velocity model and

predetermined steady-state gains. In another example [19],

particle filters have been used to track a number of interacting

people from a fixed camera.

III. BICYCLE DETECTION WITH A DEFORMABLE

PART-BASED MODEL

Bicycle tracking from a moving vehicle is generally a

challenging task especially when using a single video camera

as its sole sensor. With advances of general object detec-

tion algorithms, tracking-by-detection has been a promising

candidate for this purpose. This approach, basically, runs a

detector for objects of interest at every time instant and pro-

vides a sequence of measurements to a tracking framework.

In this work, we take a bicycle detector as a virtual sensor

which generates a sequence of measurements. The output of

this virtual sensor is a list of 2D bounding boxes and plays

a pivotal role in a tracking process. Given a sequence of

images, however, a robust and continuous bicycle detection

is challenging due to the facts that a bicycle presents dramatic

appearance changes according to camera viewpoints and also

has an intra-class variability (e.g., mountain bikes vs. racing

cycles). The first problem can be solved by building multi-

ple view-based detectors to overcome dramatic appearance

change. One of the common solutions to tackle the second

problem is to establish a part-based model for an object of

interest. Rather than trying to capture a global pattern of

an object with one template, part-based models focus on

parts of an object and, in consequence, provide more flexible

and robust representations. While part-based models have an

elegant formulation in theory, they have not shown a better



performance compared to a single template based approach.

Recently, however, Felzenszwalb et al. [9] demonstrate a

part-based model which outperformed the single template

model by using a pictorial structure formulation in combi-

nation with a variation of HOG features. In this paper, our

work for bicycle detection is largely based on this method.

We build a eight view-based bicycle model and analyze

the statistics of bicycle detection responses. The following

subsections discuss some important details of this model and

how it was applied to the algorithm in our research.

A. Deformable Part-Based Model

The core ideas of the deformable part-based model [9] boil

down to the following three factors: a deformable part rep-

resentation, an efficient matching process, and a latent SVM

training process. First, they define a star-structured part-based

model which is composed of a root filter, n (usually six) part

filters, and associated deformation parameters. A root filter

is for capturing an overall shape of an object (shown in the

second row in Figure 2) and part filters are for capturing

the appearance of each part of an object (shown in the third

row). Finally, deformation parameters are for measuring the

deviation of the part from its ideal location (shown in the

fourth row). Thus, the score of the star model at a particular

position and scale is defined by the sum of root filter score

and part filter scores (from the best possible placement of

the parts) subtracted by a deformation cost. The method

also introduces a mixture of this star model to handle with

significant changes in appearance according to viewpoint

variation. Second, an efficient matching process based on

dynamic programming and generalized distance transforms is

proposed. With the mixture of star models, since a matching

process itself is a huge optimization problem, it is most im-

portant to incorporate a fast method [10] for a detection task.

Finally, a latent SVM training process is formulated to train

a mixture of star models from bounding box ground truth. As

the ground truth does not include part labeling information,

part locations are treated as latent variables during training

and thus the whole problem boils down to an optimization

task with two sets of variables. In practice, they solve this

problem using a coordinate descent algorithm by alternating

between finding better latent values and optimizing the latent

SVM objective function. In a detection process each example

x is scored by a function of the following form:

fβ(x) = max
z∈Z(x)

β · Φ(x, z). (1)

where β is a vector of model parameters, z are latent values,

and Φ(x, z) is a feature vector. In one star model, β is

the concatenation of the root filter, the part filters, and

deformation cost weights, z is a specification of the object

configuration, and Φ(x, z) is concatenation of subwindows

from a feature pyramid and part deformation features. We

refer the reader to [9] for more details.

Fig. 2. Visualization of a three-component bicycle model. The top row
shows several main viewpoints of a bicyclist and each column corresponds
to one pair of specific view of a bicycle. Each row (from top to bottom)
represents root filter, part filter, and deformation model, respectively.

B. Bicycle Detector as a Virtual Sensor

The physical sensor we are using is a monocular video

camera which generates a sequence of images at a certain

rate. At the arrival of a new image from the camera, our

bicycle detector is applied and generates a set of bounding

boxes if there are bicycles. Thus, in a tracking perspective,

the bicycle detector is considered as a virtual sensor which

generates a sequence of measurements. The measurement at

time step k can be expressed by:

zk = [b1,b2, ...,bn] (2)

bi = [t d l r v]T i = 1, ..., n

where bi indicates the y coordinates of the top(t) and

bottom(d) borders of a bounding box, the x coordinates

of the left(l) and right(r) borders, and an index of its

view(v), respectively. The measurement set is fed into the

Kalman filter’s update process. In this sense, the idea using

a bounding box as a measurement should be justified in terms

of the following two aspects: continuity and consistency of

responses.

Bicycle detection should be continuous as a viewpoint

toward a bicycle is changing. Thus, the virtual sensor should

be somehow equipped with the capability to handle this

difficulty. Our baseline detector approaches this problem

by building several models for different viewpoints of an

object. However, this is a tricky trade-off problem between

increasing the number of models and reducing the time

complexity. Here, we propose to use eight view-based bicycle

detector, paired and trained by its symmetric counterpart, in

consequence, three physical models. This three-component

bicycle model is visualized in Figure 2. The reasoning for

using this combination will be discussed in Section V.

Secondly, bicycle detection should be consistent. The quality

of measurements in terms of its accuracy and consistency is



−40 −20 0 20 40 60
0

5

10

15

20

error in pixel

n
o
. 

o
f 

e
le

m
e
n
ts

Left line: mean = 1.04, std = 13.59

−100 −50 0 50
0

5

10

15

error in pixel

n
o
. 

o
f 

e
le

m
e
n
ts

Right line: mean = −0.81, std = 15.19

−100 −50 0 50
0

2

4

6

8

10

error in pixel

n
o
. 

o
f 

e
le

m
e
n
ts

Top line: mean = −6.20, std = 21.49

−40 −20 0 20 40 60 80
0

5

10

15

20

error in pixel

n
o
. 

o
f 

e
le

m
e
n
ts

Bottom line: mean = 2.28, std = 14.89

Fig. 3. Error distribution of bounding boxes obtained from the PASCAL
VOC 2009 dataset val. Mean (m) and standard deviation (std) are also
computed.

always an essential factor in a recursive filtering application.

Thus, we provide an empirical justification for the quality

of the response of our bicycle detector. Theoretically, as

shown in Figure 2, the bicycle model itself manifests a

quite tight bounding box regardless of its viewpoint, but

in reality, detection results can show a significant variation

depending on the configuration of its all parts. This fact

can be easily revealed by analyzing statistics of detected

bounding boxes. Figure 3 shows error distribution of four

border lines of bounding boxes. This result is based on

samples from the PASCAL VOC 2009 dataset val 1. Out

of 313 bicycle instances in the dataset, 118 bicycle instances

were successfully detected with our bicycle detector and

used in this analysis. Another interesting fact is that the

error distribution can be well approximated by the Gaussian

distribution, which is desirable for the Kalman filter.

IV. MULTIPLE BICYCLE TRACKING WITH AN

IMM ALGORITHM AND A RAO-BLACKWELLIZED

PARTICLE FILTER

With a set of measurements from our bicycle detector,

a well defined tracking framework should be used to fuse

the information from the object’s motion model and mea-

surements. Because the bicycle detector is a quite time

demanding machine learning based module, we are interested

in incorporating an algorithm with a lower complexity and

providing certain indication about its uncertainty for tracking.

For this reason, we chose to apply an extended Kalman filter

(EKF) to our framework. We assume that real motion of a

bicycle can be modeled by a set of simple motion models. In

addition, as a measurement model, a nonlinear perspective

projection equation is linearized with a flat ground assump-

tion and used in the EKF update process. One key fact of our

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/#devkit/,
accessed on Sep. 5 2009

method is that we track the relative motion of a bicycle in the

vehicle coordinate and thus, state variables are represented in

the same coordinate accordingly. Specifically, after assuming

that one bicycle track is already initialized, the tracking is

conducted via the following two steps:

• Predict: Predict its next position in the vehicle coordi-

nate using a set of motion models.

• Update: Update its state by incorporating current mea-

surements, i.e., bounding boxes.

This process is illustrated in Figure 4. We discuss technical

details of both a motion model set and a measurement model

in the next subsections.

A. Bicycle Motion Model Set

As mentioned before, a bicycle has its own unique kine-

matics. Thus, at a first glance, it seems natural to use a

bicycle’s kinematics to model the real motion of a bicycle

accurately. However, it become a fuzzy situation once con-

sidering the fact that the measurement in our case is a rough

bounding box in the image space. From the sequence of

these measurements, estimating all state variables (e.g., yaw

angle and yaw rate) of a complicated model is a challenging

task. Also, in information theoretic perspective, the level of

accuracy between a motion model and a measurement model

should be well balanced for a good tracking performance.

We have been doing a comprehensive experiments to find

the best solution for this issue. From our previous work [3],

we have learned that a bicycle can be seen as a moving mass

and tracked reasonably well using a constant velocity model.

Here, we exploit a more complicated motion model based

on simplified bicycle’s kinematics and furthermore, improve

tracking performance by fusing the information from both

motion models. For this purpose, we use a well-known

IMM (Interacting Multiple Model) filter. The underlying

principle of the IMM filter is that the true motion of a

bicycle cannot be exactly modeled by just one model, only

be sufficiently approximated by using several motion models

for representing dynamic driving behaviors of a target (i.e.,

maneuverings of a bicycle). The IMM filter runs several

motion models in parallel and estimates a state by computing

a weighted sum of several filter results which are based

on different motion models. The derivation of the IMM

estimator is well explained in [2] and omitted here for the

brevity. Rather, we focus on a motion model set for the IMM

filter.

For the model set, we use a combination of a constant

velocity (CV) model and a simplified bicycle (SB) model.

Since both motion models belong to a point model and a 3D

bounding box is used as an object representation in real world

scene, we chose to use the midpoint of the front bottom line

of a 3D bounding box (displayed as a blue dot in Figure 4)

as a representative point. Based on a flat ground assumption,

the point can move freely only in the ground plane (i.e., X-Z

plane) in the vehicle coordinates. First, in a CV model, the

state of this moving point at time step k is expressed as a



vector:

xk = [xk zk ẋk żk]
T (3)

and the continuous-time state equation for this CV model [1]

can be modeled as a linear, time-invariant system:

ẋ(t) =









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









x(t) +









0 0
0 0
1 0
0 1









w(t) (4)

where w(t) is a continuous time white Gaussian noise

process with a power spectrum density Qcv. A discrete

model of this state-space equation is used for the Kalman

filter. Secondly, in a SB model, the state of the point is

expressed by:

xk = [xk zk ψk vk ωk ak]
T (5)

where ψk, vk, ωk, and ak are the yaw angle, forward velocity,

yaw rate, and acceleration, respectively. The orientation of

the forward velocity and acceleration vectors are defined

with respect to the yaw angle as shown in Figure 4a.

The continuous-time state equation for this SB model [15]

assuming a constant acceleration and constant yaw rate is

given by:

ẋ(t) =

















v cos(ψ)
v sin(ψ)

ω
a
0
0

















(6)

A discrete model of this state-space equation can be calcu-

lated by integration of the upper differential equation over

one sampling period T and expressed by:

x̂k|k−1 = f [x̂k−1|k−1]

= x̂k−1|k−1 +

∫ T

0

ẋ(τ)dτ (7)

The expression
∫ T

0
ẋ(τ)dτ in Equation 7 is represented in

matrix form as:

















v+aT
ω

SW + a
ω2CW − v

ω
sin(ψ)− a

ω2 cos(ψ)
− v+aT

ω
CW + a

ω2SW + v
ω
cos(ψ)− a

ω2 sin(ψ)
ωT
aT
0
0

















(8)

where SW = sin(ψ + ωT ) and CW = cos(ψ + ωT ). The

noise covariance matrix Qsb of this discrete-time process

can be computed using the direct discrete method [2] as

ΓDQcD
TΓT where the noise gain matrix Γ is the Jacobian

of Equation 7, Qc is the noise covariance matrix for the

continuous-time process, and D is a mapping matrix.

Real world scene

2D image space

Prediction stage

Update stage

(a)

(b)

z

x

x

z
av,

ψ

ω

Fig. 4. Simplified bicycle motion model (a) and an illustration of the
bicycle tracking process: prediction and update (b). Ellipses under bicycles
represent uncertainty of the estimates.

B. Bicycle Measurement Model

In our work, since a bicycle detector is used as a virtual

sensor device, the measurements are bounding box positions

in the image space. In addition, the tracking process itself is

executed in the state space (i.e., in the vehicle coordinate).

Thus, a measurement model should be able to map the

state variable x into its measurement space (i.e., in the

image coordinate). To facilitate this mapping, we use only

one representative point which is the midpoint of a bottom

line of a 2D bounding box as a measurement. Then, the

mapping process is simply done by a perspective projection

equation. The nonlinear mapping of the state space into the

measurement space of the video camera is given by:

zk = h(xk, k) + vk (9)

where vk is the measurement noise at time step k and can

be determined by analyzing the statistics of detection results

as discussed in Section III. The nonlinear mapping function

h is obtained by the following transformation:





u
v
w



 =





f/sx 0 uc
0 f/sy vc
0 0 1







 R | t













X
Y
Z
1









=





a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34













X
Y
Z
1









(10)

where sx and sy are scale factors in x and y, respectively,

and (uc, vc) is a camera optical center and f is the focal

length of a camera. R is a rotation matrix and t is a

translation vector for extrinsic parameters. The parameters

aij are the corresponding entries of the final perspective

projection matrix. Based on a flat ground assumption, the

vector function h is expressed by:

h1 =
a11X + a13Z + a14
a31X + a33Z + a34

h2 =
a21X + a23Z + a24
a31X + a33Z + a34

(11)



C. Extension to Multiple Bicycle Tracking

The single bicycle tracking method discussed in the previ-

ous subsections is extended to the multiple bicycle tracking

framework by incorporating a Rao-Blackwellized Particle

Filter (RBPF). Since we have multiple measurements and

no information about how many bicycles exist at a certain

time step, the scope of the problem is quite broad, including

solving a data association problem, estimating the number of

bicycles, and each bicycle tracking. The RBPF framework

provides a mathematical tool to handle this daunting task.

The core idea of the RBPF is to break down a huge state

estimation problem into two smaller problems, one can be

solved by an analytical solution and the other one can be

solved by a particle filter, hence better results than what

could be obtained from a pure particle filter solution. Fol-

lowing the Rao-Blackwellized Monte Carlo data association

(RBMCDA) algorithm given in [20], we apply the algorithm

into our multiple bicycle tracking problem. Specifically, it

relies on a Bayesian factorization to separate the posterior

into two parts: 1) an estimation of the number of bicycles

and data association problem and 2) a tracking problem. The

RBPF solves the first problem via a particle filter and then,

with known number of bicycles and data associations, tracks

each bicycle using an IMM filter developed specifically for

bicycles. Here, we briefly describe the problem formulation

and how we applied the RBMCDA algorithm. In our case, the

problem can be formulated by the following decomposition

of the posterior:

p(λ0:k,x0:k|z1:k) = p(x0:k|z1:k, λ0:k)p(λ0:k|z1:k) (12)

where xk is the state variable of n bicycles at time step k,

z1:k , {z1, z2, ..., zk}, and λk is the latent variable which

contains the visibility indicator ek and the data association

indicator ck at the time step k, i.e., λk = {ek, ck}. It

is important to understand that this factorization is always

true, but only applicable to a problem when there is certain

structure within the state variables. In our case, for example,

the state variable is a mixture of state variables of n bicycles,

a data association indicator meaning that which measurement

corresponds to which track (i.e., bicycle), and a visibility in-

dicator which controls target’s initialization and termination.

Once the second term in the right hand side of Equation 12 is

determined, the first term can be easily solved by our single

bicycle tracking method. The RBMCDA algorithm solves

the second term using a particle filter by analyzing only one

measurement at a time assuming that at most one target can

terminate at any time step.

V. EXPERIMENTAL RESULTS

We quantitatively evaluated our bicycle tracking method

using various real world datasets. To evaluate our bicycle

detector, we used the PASCAL VOC dataset [8] with a se-

lected subset of a new bicycle dataset we collected from our

experimental vehicle. As for the bicycle tracking evaluation

in a real application context, we collected a new bicycle

dataset of various scenarios based on the bicycle accident

statistics [14]. This bicycle dataset consists of 6 sequences

(three from the stationary ego-vehicle and three from the

moving ego-vehicle) and is made publicly available to the

community for research purposes2. Tracking experiments for

all sequences are also conducted.

A. Detection Performance

To build a bicycle model, we used 357 positive training

samples and 3300 negative samples. Based on samples from

the PASCAL VOC 2009 dataset train, we discarded some

bad samples (e.g. too small or too weird viewpoint) and

then augmented the dataset with 160 positive samples from

our bicycle dataset. We trained a three-component bicycle

model which can capture eight different viewpoints of a

bicycle (i.e., frontal and rear, four different diagonal views,

and right and left side view) by pairing samples of one

specific viewpoint with samples of its symmetric counterpart.

Figure 2 visualizes this mixture model. For the test set,

we used the same PASCAL dataset val plus 100 positive

samples from ours. We run the detector equipped with three-

component bicycle model over all images in the test set

and draw a precision-recall (PR) curve for an evaluation.

Some typical examples of bicycle detection are shown in

Figure 5a and a PR-curve for our model is compared with

that of the two-component model as well as that of the one-

component model in Figure 5b. We used the same evaluation

criterion of VOC PASCAL competition for accepting as

a successful detection. The logical reasoning for using a

three-component model can be explained with this result. As

discussed in Section III, choosing the number of model is a

trade-off between the detection rate and running time. From

the PR curve, it is obvious that two and three-component

model outperforms one-component model and two and three-

component models show very similar performance. Since we

use viewpoint information, which is contained as an element

of a measurement, for a tracking process, we decided to use

a three-component bicycle model.

B. Tracking Performance

Tracking experiments were conducted on all of our new

bicycle dataset which consists of six video sequences from

different scenarios. Half of them is from a stationary ego-

vehicle and the other half of them is from a moving ego-

vehicle. The sequences are challenging in that we tried to

capture the true motion pattern of a bicycle with respect to

an ego-vehicle, which is very close to real traffic situations.

Some important statistics of the sequences are summarized

in Table I. Since the dataset is quite challenging and the

number of sequences is large (i.e., 6), it is hard to interpret

the results quantitatively. Thus, we have listed the root mean

square errors (RMSE) of position estimates in the last two

columns in Table I to make a comparison between single

motion model approach (CV model) and an IMM approach

(CV and SB models). We also provide the result videos on six

sequences at the same website as our bicycle dataset. Here,

we only analyze three specific scenarios (‘seq1’, ‘seq3’, and

‘seq6’) in detail.

2http://www.cs.cmu.edu/h̃yunggic/bicycle



Fig. 5. Examples of detection with our three-component bicycle model (a), PR curves for three detectors (b). The red plot shows the response for the
three-component model trained with PASCAL2009 and our dataset and the blue plot and green plot show the response for two-component model and
one-component model, respectively, trained with the same dataset.

In the ‘seq1’ case, two bicyclists are moving laterally

while the ego-vehicle is not in motion. This sequence is

a relatively easy case, but an interesting point is that our

tracking system can track the further bicyclist well even

when there is quite amount of occlusion. The second row

of Figure 7 shows this result.

In the ‘seq3’ case, a bicyclist comes across the road in

front of the stationary ego-vehicle and makes a turn toward

the vehicle so that the left side and frontal view of the

bicycle are seen and must be tracked. The tracking result

is shown in Figure 6 by plotting filtered state variables,

especially positions in X and Z coordinates, at every time

step. Selected tracking result images are also shown in the

first row in Figure 7. As can be seen in the magnified region,

we can clearly see the advantage of using a more complicated

bicycle motion model in combination with a CV motion

model.

In the ‘seq6’ case, three bicyclists are shown, one bicyclist

is out of detection distance and two bicyclists become visible

in the field of view (FOV), moving longitudinally along the

ego-vehicle while the ego-vehicle itself moves forward. The

third row of Figure 7 shows tracking results of our system.

As can be seen, our system manages to track two bicycles de-

spite significant egomotion and dynamic viewpoint changes

of bicycles.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a vision-based 3D bicycle tracking

method for intelligent vehicles using a deformable part model

based detector and an IMM tracking algorithm. To robustly

detect bicycles, we used Felzenszwalb’s deformable part-

based detector [9] to construct a powerful three-component

bicycle model. This robust bicycle detector provides a series

of measurements (defined as bounding boxes) to the tracking

module. We defined two different motion models to describe

TABLE I

DETAILS OF THE SIX BICYCLE SEQUENCES. SM(SINGLE MODEL),

IMM(INTERACTING MULTIPLE MODEL)

Seq. ego-vehicle bicycle RMSE(SM) RMSE(IMM)

‘seq1’ stationary laterally 0.0183 0.0216

‘seq2’ stationary longitudinally 6.6207 6.6196

‘seq3’ stationary randomly 0.1515 0.1443

‘seq4’ moving laterally 2.3493 2.3860

‘seq5’ moving longitudinally 7.0884 6.860

‘seq6’ moving randomly 11.0929 10.6281

the kinematics of a bicycle. For each motion model, an

extended Kalman filter (EKF) is used to estimate the position

and velocity of a bicycle in the vehicle coordinate system.

Finally, we show how we extend our IMM tracking method

to allow it to track multiple bicycles by incorporating a Rao-

Blackwellized Particle Filter to solve the data association

problem. This complementary approach allows our system

to effectively track a bicycle even when it changes orien-

tation (and thus appearance) in the image. We have shown

several experiments that illustrate the effectiveness of each

component of the proposed method. As part of our future

work, we intend to develop a new measurement mapping

function to extract more information from the 2D bounding

box and also apply our current method to other types of

relevant objects such as pedestrians and vehicles.
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Fig. 7. Tracking results for three scenarios: ‘seq1’ (second row), ‘seq3’ (first row), and ‘seq6’ (third row). A tracking result within (beyond) a certain
distance (i.e., 8m) is visualized with a 3D (2D) bounding box. 3D localization is possible by combining the state variable and a scale factor from the
detection result.
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