
Sharing
Control
Presenting a Framework for the
Operation and Coordination of
Multiple Miniature Robots

Remote surveillance and reconnaissance applica-
tions can be greatly facilitated through the use
of a small semi-autonomous robotic sensor
platform. A human operator equipped with a
wearable computer interface can direct a small

mobile robotic platform into a dangerous or difficult to reach
area and gather information from within. Sensor information
is returned to the human through a head-mounted display,
and commands are sent from a hand-held controller. Simply
teleoperating the robotic platform can be useful in many situa-
tions, but the operator’s attention must be completely dedi-
cated to controlling the robot. This may be difficult in an
emergency situation because of the high likelihood of distrac-
tions. To assist the human operator, the robot can be given
more autonomy, allowing it to interpret higher-level com-
mands from the human. If a
task requires the use of multiple
robots, a human operator
cannot be expected to simulta-
neously control them all di-
rectly. Instead, the robots must
be able to perform useful tasks
when the operator’s attention is called elsewhere.

This article introduces a layered system that has been devel-
oped to facilitate this kind of multimodal control (Fig. 1). This
system includes user interfaces (UIs) for teleoperation clients
and robust sensor interpretation algorithms for autonomous
control clients. A distributed software control architecture dy-
namically coordinates hardware resources and shares them be-
tween the various clients, allowing for simultaneous control of
multiple robots.

The article starts with related work and continues with a
description of the updated Scout robot (the hardware focus
of the system) and the various designs and implementations

of the Scout UIs. The distributed control architecture, along
with a dynamic resource allocation scheme, are described,
followed by a novel mobile robot visual servoing scheme.
Finally, some conclusions and future work are presented.

Related Work
Constructing robots that are small and easily deployable, yet
able to do useful work and operate reliably over long peri-
ods of time has proven to be quite difficult. Our Scout ro-
bots promise to be among the first miniature robots ready
for field exploration.

To control a large group of robots, the software architecture
must allow for distributed operations and facilitate allocation
and use of resources. Architectures have been proposed to sup-
port fault-tolerant control of multiple robots [1], mission speci-

fication [2], and high-level task
planning [3]. Much remains to
be done before a general archi-
tecture is developed that is ap-
plicable to heterogeneous
robots and different tasks. The
architecture we presented pro-

vides support for distribution of resources across robots and the
use of shared resources and integrates, in a seamless way, auton-
omous and human-supervised control.

Robots for Surveillance and Reconnaissance
For surveillance and reconnaissance applications, a robot that
is small enough to avoid detection and can access hard to reach
areas is desirable. Such a robot should be able to transmit envi-
ronmental information to a remote location for additional
analysis. The robot should also be able to receive remote in-
structions to help guide its search and gather as much useful in-
formation as possible.

DECEMBER 2002 IEEE Robotics & Automation Magazine 41

By PAUL E. RYBSKI, SASCHA A. STOETER,
NIKOLAOS P. PAPANIKOLOPOULOS,

IAN BURT, TOM DAHLIN, MARIA GINI,
DEAN F. HOUGEN, DONALD G. KRANTZ,

and FLORENT NAGEOTTE

1070-9932/02$17.00©2002IEEE

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 23,2010 at 20:46:33 UTC from IEEE Xplore. Restrictions apply.

The Scout robot [4], shown in Fig. 2, is an innovative min-
iature robot developed specifically to address these require-
ments. The robot’s small size (11-cm long and 4-cm wide) and
light weight (approximately 200 g) allows it to be easily carried
by a human or another robot.

Scouts carry a small camera that broadcasts environmental
information over an analog radio-frequency (RF) transmitter.
Scouts can also transmit and receive digital data over a separate
RF modem using a custom network protocol. Due to their
small size, Scouts have extremely limited onboard computa-
tional power, requiring the full capacity of their two CPUs for
network communications and actuator control. Motion com-
mands are transmitted from a remote source, where they are
received and executed by the robot.

User Interfaces
Traditionally, our robot control interfaces have run on a
Linux workstation or laptop, requiring the X Window System
to operate. However, having to transport a computer, a Scout
radio, and a video receiver can be extremely cumbersome and
highly impractical for field use.

To address the issue of portability, a wearable Scout package
(Fig. 3) has been developed that contains a Scout radio, a video
receiver, and an internal battery pack. The user can send com-
mands to the Scout robot through the use of a hand-held con-
trol pendant or joystick interface. The joystick is plugged into a
UI CPU board that interprets the input from the controller and
commands the data radio CPU to send a command packet to
the correct Scout. Video data returned from the Scout is cap-
tured on the video receiver board and fed into a head-mounted
display controller. A clip-on video display is attached to glasses
worn by the user, allowing the video to be observed.

The wearable radio’s control pendant requires only a single
hand to control basic Scout functions. If more flexible control is
desired, an interface running on a commercial PDA (Fig. 4) can
be used. The PDA interface is connected to the wearable Scout
controller and takes the place of the control pendant to provide
a more versatile interface and data visualization system.

To allow for both autonomous and teleoperated control of
a Scout from a wearable controller, a wearable PC with a
framegrabber must be connected to the system. As shown in
Fig. 5, the PC sits between the UI and the wearable controller.
The PC receives inputs from the joystick/PDA/pendant and
sends the appropriate commands to the radio. Received video
is captured by a framegrabber and presented to the user
through the clip-on display. This captured video can also be
used by autonomous Scout control programs running on the
PC. The addition of wireless Ethernet would allow the PC to
communicate with other computers on the network and
make use of the machine-independent nature of the software
control architecture described in the next section.

Distributed Control Architecture
In order to support simultaneous control of multiple robots in
both autonomous and teleoperated capacities, a distributed
control architecture emphasizing the reusability of software
components and the efficient utilization of resources has been
designed [5]. This architecture runs on a set of networked
computers and can control an arbitrary number of robots. The

DECEMBER 2002IEEE Robotics & Automation Magazine42

User Interface
PDA / Joystick
Wearable CPU

Autonomous Control
Visual Servoing
Robust Sensor Interpretation

Distributed Control Architecture
Dynamic Scheduling of Resources
Hardware-Independent Mission Execution
Coordinated Robotic Control

Robotic Hardware
Mobility
Sensing
Communications

Figure 1. A layered system architecture for control of multiple robots
in both teleoperated and autonomous modes.

Figure 2. The Scout robot shown next to a ruler (in) for scale.

Figure 3. The wearable Scout controller.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 23,2010 at 20:46:33 UTC from IEEE Xplore. Restrictions apply.

software architecture consists of four subsystems: mission con-
trol, resource pool, UI, and backbone.

Mission Control
All behaviors and decision processes are contained and man-
aged from within the mission control subsystem. Here, a
mission can be built out of discrete behaviors, started, ob-
served and stopped by a single human operator. Behaviors
can be organized in a hierarchical fashion, where “parent”
nodes spawn off “children” to do various tasks. In this way, a
task can be decomposed into specific subtasks, where each
subtask is addressed by a specific behavior and its children.
When a child behavior finishes its task, it returns status infor-
mation back to its parent, which decides what actions to take
from that point.

Behaviors are given priorities that are used to determine
how to allocate access to resources. Because behaviors at dif-
ferent levels of the tree describe different levels of detail of a
task, it only makes sense to compare priorities between be-
haviors that share the same immediate parent. To mediate
disputes between behaviors that are more distantly related,
the tree is traversed to find the nearest ancestors of both be-
haviors that share the same parent. Only then can a decision
be made about which high-level subtask is currently more
important to complete.

Resource Pool
In order for behaviors to do anything useful, they must
make connections to components in the resource pool sub-
system. This subsystem controls access to robotic hardware,
such as robots or radios, and other computational resources,
such as framegrabbers, via resource controllers (or RCs).
Every physical resource is given its own RC to manage it. If
a behavior or another decision process needs to make use of
that particular resource, it must be granted access to the ap-
propriate RC.

Some physical hardware can only be managed by having si-
multaneous access to groups of RCs. This grouping is handled
by a second layer consisting of processes called aggregate re-
source controllers (ARCs). Every ARC is an abstract repre-
sentation of the group of RCs that it manages, as shown in Fig.
6. An ARC provides a specialized interface into the group of
RCs that it manages. This frees behaviors from the effort of
managing all of the commands to each of the specific RCs. In
fact, behaviors are never allowed to interface to the RCs di-
rectly. They request an ARC that allows the behavior to con-
trol the resources controlled by it.

The central component that oversees the distribution and
access to the ARCs and RCs is the RC manager that runs a
centralized real-time schedule that dynamically adjusts itself to
the current demand of all running decision processes. Behav-
iors send scheduling requests to the RC manager in order to
secure runtime for their ARCs. Each query is parameterized
by the specific set of RCs that the ARC needs. The RC man-
ager takes each scheduling request and determines whether

DECEMBER 2002 IEEE Robotics & Automation Magazine 43

Figure 4. PDA interface.

User Interface

Pendant

PDA

Joystick

Clip-On
Display

Wearable PC

Serial/Parallel/USB Port

Frame Grabber

Video Card
Wireless
Ethernet

Other PCs
Wireless
Ethernet

Wearable Scout
Controller

Scout Radio

Video Receiver

Figure 5. Connecting a wearable PC to the UI and Scout radios.

Behavior
(Priority 1)

Behavior
(Priority 1)

Behavior
(Priority 2)

ARC ARC ARC

RC RC RC RC

Figure 6. Example of how behaviors access RCs.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 23,2010 at 20:46:33 UTC from IEEE Xplore. Restrictions apply.

the behavior can have access to the ARC and RCs, or
whether it will have to wait until those resources are freed
when a higher-priority behavior is finished with them.

User Interface
Direct human control of the resources in the system is pro-
vided through the UI subsystem. This system allows a human
operator to connect to a Scout robot directly and command it
from a graphical console. A UI console can be started on any
machine on the local network, allowing multiple users to re-
quest control of the resources simultaneously. Like a behavior,
a UI component gets access to its ARCs and RCs by sending a
scheduling request to the RC manager. UI components have
priorities that are set when they are invoked, allowing them to
have priority over all currently running autonomous behav-
iors. This allows a human to immediately take control over an
autonomously controlled robot, adjust its position and actions,
and release it back to the behavior that was controlling it be-
fore. Alternatively, very low-priority UI components can be
run that simply monitor the status of the system and provide
occasional feedback.

The UI subsystem serves two purposes: mission design and
mission execution. In the mission design stage, it supports
building complex behaviors from existing behaviors. During
mission execution, an operator can view mission status, alter
system parameters, and control robots from teleoperation con-
soles.

Backbone
The backbone subsystem provides services that enable the
other subsystems to work together. These services are capable
of dynamically starting and stopping components, providing
seamless communications across a variable number of net-
worked machines, and trying to balance the system load over
these machines. All intercomponent communication is han-
dled transparently by common objects request broker archi-
tecture (CORBA) [6].

An XML description file contains the configuration of how
an instance of the architecture is defined. This file describes
what machines on the local network are accessible and what
core services must be activated to facilitate the mission. The
first service to be started is the CORBA nameserver, which is
the central communications hub for all connected compo-
nents (behaviors, UIs, ARCs, RCs, and core services). The
next component to be started is the component database. This
component manages a list of all possible component types and
information about their type and multiplicity. For instance, it

allows behaviors to be instantiated multiple times as part of a
mission, but does not allow multiple core services to start
(which may otherwise wreak havoc in the system). The next
service to start up is the component placer. This component is
responsible for starting all noncore service components and is
the central service that all other components interface with for
this purpose. A component creator service is started on each
computer that is taking part in the execution of the mission.
The component placer instructs the component creators to
start components as needed. The next system to be started is
the static dependency database. This component maintains a
database of all the hardware that is currently available for use.
This information is provided by a description file that is up-
dated immediately before the mission is started. Finally, the
RC manager is started.

Examples of ARCs and RCs
In order for a process to control a single Scout robot, several
physical resources are required. First, a robot that is not cur-
rently in use by another process must be selected. Second, a
command radio that has enough capacity to handle the de-
mands of the process is needed. If the Scout robot is to transmit
video, exclusive access to a fixed video frequency is mandatory.
Without exclusive access, the interference between the trans-
mitted video from multiple Scouts would render any signal
processing hardware/algorithms useless. Finally, to process the
video, a framegrabber and tuned video receiver are required.
Each of these four resources is managed by its own RC.

Several kinds of ARCs are available, each requiring differ-
ent resources to operate. These include ARCs that are capable
of controlling only the actuators on the Scouts and do not re-
quire the use of the camera, ARCs that drive the Scouts and
broadcast video data (to be viewed on a monitor by a human,
for example), and ARCs that move the Scout, broadcast data,
and capture it on a workstation for processing.

The RC Scheduler
Access to RCs must be scheduled when there are not enough
RCs to satisfy the requirements of the ARCs. The RC man-
ager maintains a master schedule of all active ARCs and grants
each of them access to their RCs when it is their turn. When
requesting access to a set of RCs, an ARC must specify a mini-
mum amount of time that it must run to get any useful work
done (generally on the order of seconds to minutes). The RC
manager uses a scheduling algorithm that tries to grant simul-
taneous access to as many ARCs as possible.

ARCs are divided into groups of equal priority. All ARCs
of a higher priority must be either completed or running (not
waiting on RCs) before an ARC of a lower priority can be
added to the schedule. While this may not make full use of all
available system resources, it does maintain the hierarchy of
priority defined in the behavior manager.

When activated, the ARC contacts the RC manager and
requests access to its set of RCs. The RC manager examines
the ARC’s request, checks that the RCs requested are running

DECEMBER 2002IEEE Robotics & Automation Magazine44

To control a large group of robots,
the software architecture must
allow for distributed operations
and facilitate allocation and use
of resources.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 23,2010 at 20:46:33 UTC from IEEE Xplore. Restrictions apply.

(and starts them if they are not), and then attempts to add the
ARC to the schedule.

ARCs are divided into sets depending on the RCs they re-
quest. ARCs that ask for independent sets of RCs are put into
different groups. These groups will run in parallel with each
other since they do not interact in any way. The ARCs that
have some RCs in common are examined to determine which
ARCs can operate in parallel and which are mutually exclu-
sive. ARCs that request an RC that is nonsharable cannot run
at the same time and must break their operating time into
slices. ARCs that have a sharable RC in common may be able
to run simultaneously, assuming that the capacity requests for
that sharable RC do not exceed the total possible capacity.

ARCs that have higher priorities are given precedence
over ARCs with lower priorities. The RC manager attempts
to generate a schedule of running ARCs that allow all ARCs
of the highest possible priority to run as often as they are able.
If any ARCs of a lower priority can run at the same time as
these higher priority ARCs without increasing the wait time
of any of the higher-priority ARCs, they are allowed to do so.

Once the ARC schedule has been constructed, the RC
manager signals its schedule manager to implement it. The
schedule manager takes care of signaling context switches as
each ARC runs for its requested minimum time. When a con-
text switch happens, the schedule manager instructs each of
the running RCs to disconnect from their current ARCs and
connect to the next set to be scheduled. The ARC signals its
controlling process (behavior or UI) that a context switch has
occurred and will not pass any messages to its RCs until they
are available for work again.

Sharable Resources
Sharable RCs, such as the Scout radio, have to manage their
own schedule to ensure that each of their ARCs is given a
chance to send packets to their robot at the rate they request.
When requesting access to a sharable RC, an ARC must spec-
ify a usage parameter that defines how often it will make re-
quests and, if relevant, what kinds of requests will be made. In
order to streamline the scheduling process, commands sent to
sharable RCs must be periodic and have a constant interval
between invocation. In addition, each request must complete
before the next request for that command is made. However,
because the CPU load of any given computer will vary de-
pending on how many components are running on it, the run
time of any given request may vary. Given the first two con-
straints, and some assumptions on the validity of the third, a
rate monotonic algorithm [7] is used to schedule access.

Requests with higher frequencies are given a higher prior-
ity over requests with lower frequencies. This allows for opti-
mal scheduling of the requests. However, higher priority
ARCs have precedence over lower-priority ARCs, regardless
of the frequency of the request. This can cause a disruption in
the way requests are handled by the scheduling algorithm and
may produce a schedule that is suboptimal in its usage of the
RC. However, the relative priorities of ARCs takes prece-

dence over optimal usage of the resources. Only when all of
the higher-priority RCs have been scheduled will the lower
priority RCs be allowed access. This enforces the optimality
of the schedule. All other ARC requests must be scheduled by
the RC manager.

Visual Servoing
One of the challenges that must be addressed when writing
autonomous behaviors for the Scout is how to handle signal
corruption and noise in the image returned from the analog
RF link. Noise creeps into the system from the Scout’s mo-
tors, multipath reflections caused by the presence of obstacles
around the robot, and weak signal strength caused by excess
distance between transmitter and receiver. Finding ways to
address this problem is extremely important, as any perceptual
system that operates in the real world must be able to recog-
nize and correct for corrupted sensor data if it expects to oper-
ate correctly.

In previous work [8], a simple frame-averaging algorithm
was used to reduce the effects of noise. This approach only
dealt with the problem of spurious horizontal lines and white
noise. The algorithms that were used to navigate the Scout
only used patches of light and dark areas as features.

Generally, the environments the Scouts are expected to
operate in will be noisy, cluttered, and highly unstructured.

DECEMBER 2002 IEEE Robotics & Automation Magazine 45

H/2
Target
Element

H/2

Skeleton
Element

H

L/2 L/2

L

Figure 7. Elements of the target and skeleton models.

For surveillance and
reconnaissance applications, a

robot that is small enough to avoid
detection and can access

hard-to-reach areas is desirable.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 23,2010 at 20:46:33 UTC from IEEE Xplore. Restrictions apply.

However, some aspects of the robot’s immediate surround-
ings, such as a home base or deployment platform, could be
marked with an easy-to-detect landmark.

The navigation procedure consists of a target acquisition
phase and a tracking phase. In the target acquisition phase, the
Scout rotates in place to find a target. Grayscale images digi-
tized from the Scout’s camera are converted to binary images
by applying a fixed threshold to them. The image is searched
for a pattern that is consistent with the known target geome-
try. If no such pattern is found, the Scout rotates a few degrees
and tries again.

Once a likely target is found, the Scout enters the tracking
phase. Two models are kept of the positions of the blobs in the
image. The first model consists of a subimage containing the
pixel values of the target. A second model consists of a
subsampled set of pixels from the original image. This set con-
sists of the pixel values at the centers of the blobs as well as the
pixel values to the top, left, right, and bottom of each blob.
This pixel set is referred to as the skeleton model of the target.

As shown in Fig. 7, the primary target model is represented as
a set of four circles that correspond to the position in the image
that the target was last seen. The “+”s show the positions of
the pixels of the skeleton. The skeleton for a four-blob target
consists of only 17 pixels.

In the tracking phase, the Scout moves towards the target.
Because the camera’s field of view is so narrow, the Scout can
easily lose sight of the target if it rotates too quickly. Thus, it is
imperative that the Scout relocate the target blobs in each suc-
cessive frame. To achieve real-time performance, new frames
are acquired as close to a rate of 30 frames/s as possible. This
tracking speed is made possible by only correlating the skele-
ton with the image. If a match is found, the target model is up-
dated by extracting the target’s new position from the image.
If no match is found, the Scout must stop moving and use the
last valid target model to locate the target (a more time-con-
suming operation). The Scout must return to the target acqui-
sition phase if the best target model matches less than 70% of
the target in the image.

A sample run of the algorithm is illustrated in Fig. 8. In this
run, the Scout starts to the left of the target. Its goal is to reach
a point on the zero angle line that will line the robot up with
the target. Currently, experiments have been tried that start
the robot upwards of 2 m away from the target. Barring bat-
tery or communications failures and given uniform lighting
conditions, the robot is able to reach the target each time.

Distributed Surveillance Task
We are interested in a distributed surveillance task in which
the Scouts are deployed into an area to watch for human mo-
tion. This is a useful task in situations where it is impractical to
place fixed cameras because of the difficulties of placing them
relating to power, portability, or even the safety of the opera-

tor (such as in hazardous situations).
With this scenario in mind, a set of ex-

periments has been run to determine the
effectiveness of the Scouts in a mo-
tion-detection task. In such a scenario,
the Scouts would be remotely
teleoperated to a position that provides
the best overall view into an area. Once at
this position, the Scouts are released by
the teleoperation process and accessed by
a behavior that analyzes the incoming
frames of data and searches for moving
objects.

Motion is detected by an image dif-
ferencing algorithm that employs a
two-step filtering process to reduce the
chances of false positives. The first filter
computes a weighted average of the in-
coming video data, which effectively
smoothes out random white noise. Each
new frame is subtracted from this aver-
aged image, and a threshold is applied to

DECEMBER 2002IEEE Robotics & Automation Magazine46

Initial Starting
Point

1

3

2

4

Target

Final Destination

Figure 8. Sample Scout trajectory executed with two approaches. Af-
ter a forward movement (1) that doesn’t reach the desired position,
the Scout rotates left (2) before moving backwards (3) to give it a
better approach (4) to the target.

Start of Path

Scout #1
View Angle

Scout #2
View Angle

End of Path

Figure 9 . Top view of the room where the human motion detection experiment took place.
The square objects are tables and other pieces of furniture. The field of views of both Scout ro-
bots are shown as wedges and the path the human took through the room is described as a line.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 23,2010 at 20:46:33 UTC from IEEE Xplore. Restrictions apply.

the pixels. This selects all of the pixels that have changed
from one frame to the next. These pixels are grouped into
blobs using a connected region extraction algorithm.

Some additional domain knowledge is used to classify
whether a blob of pixels represents motion or just noise. The
framegrabber that digitizes the incoming images has a very
hard time dealing with a badly corrupted video signal. If the
signal is bad enough, only a partial image will be returned.
Generally, this kind of noise causes whole rows of pixels in the
image to appear drastically different from the same pixels in
clean images. Thus, any blob that exhibits characteristics like
this will also be filtered out.

For the experiments, two Scout robots were placed into
positions that allowed them to view a large section of a
well-traveled path. As shown in Fig. 9, the likely path that a
human would take through this area intersects with the lines
of sight of both robots. Both robots share the same video fre-
quency (due to limited hardware), so they had to be scheduled
in a round-robin fashion. Because they could not operate in
parallel, they were each able to make full use of the capacity of
the radio. The minimum runtime for each robot was set to 5 s
in order to allow enough time for a good number of clean
frames to be captured. At the end of 5 s, a running behavior
would be swapped out (the video on the Scout shut down), al-
lowing another behavior to start.

In the experimental setup, a human enters the room from
the left and makes his/her way to the right. It generally takes
7-8 s to walk this distance and then another 7-8 s to walk back.
Of 22 trials that were run, the Scouts were able to correctly
recognize the motion of the passing human approximately
81% of the time. In some of these trials, only one robot was
able to make the proper identification. This occurred when
the human walked by one Scout while its controlling behavior
was swapped out of the currently running schedule. In 19% of
the cases, the human was able to walk by the Scouts and not be
detected. This occurred either because of high noise in the
video signal or because each robot’s controlling behavior pro-
cess was swapped out at the time the human passed by.

These results illustrate the primary difficulty that arises
when dealing with the coordination of multiple robots over a
fixed capacity communications channel. To illustrate the ef-
fects of additional load on the performance of the system, an
additional set of behaviors was loaded into the mission to run
in parallel with the motion-detecting behaviors. These two
behaviors were also given a 5 s minimum runtime to simulate
the effects of more robots being run elsewhere. The overall
detection rate of the system for the same task described above
dropped to less than 57%.

Conclusion
We have presented a robotic system for reconnaissance and
surveillance applications that is designed to operate in a semi-
autonomous fashion. A human operator is able to remotely di-
rect the robot to explore unknown areas as well as to allow the
robot to do some of the tasks autonomously (such as returning

to marked pickup area). A set of different kinds of UIs have
been described that allow humans to control one or more
Scouts, depending on the complexity of the mission. A soft-
ware architecture has been presented that allows distributed
communication to an arbitrary number of robots by tele-
operation and autonomous control clients.

Future work that will include more advanced sensor inter-
pretation and spatial reasoning techniques will expand on the
Scout’s autonomous capabilities. The software control archi-
tecture is also being expanded to allow more types of hardware
resources, such as larger robots, to be controlled. Finally, we
plan to explore new communications technologies in order to
increase the range and data rate of the RF communications
link.

Acknowledgments
This material is based upon work supported by the Defense
Advanced Research Projects Agency, Microsystems Tech-
nology Office (Distributed Robotics), ARPA Order G155,
Program Code 8H20, issued by DARPA/CMD under
Contract MDA972-98-C-0008. This work has also been
supported in part by the Microsoft Corporation and the
Idaho National Engineering and Environmental Laboratory
(INEEL).

Keywords
Multiple robots, mobile robots, distributed software architec-
ture, resource allocation.

References
[1] L.E. Parker, “ALLIANCE: An architecture for fault tolerant multirobot

cooperation,” IEEE Trans. Robot. Automat., vol. 14, pp. 220-240, Apr.
1998.

[2] D. MacKenzie, R. C. Arkin, and R. Cameron, “Specification and execu-
tion of multiagent missions,” Autonomous Robots, vol. 4, no. 1, pp. 29-57,
Jan. 1997.

[3] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert, “Multi-robot
cooperation in the MARTHA project,” IEEE Robot. Automat. Mag.,
vol. 5, pp. 36-47, Mar. 1998.

[4] D.F. Hougen, J.C. Bonney, J.R. Budenske, M. Dvorak, M. Gini, D.G.
Krantz, F. Malver, B. Nelson, N. Papanikolopoulos, P.E. Rybski, S.A.
Stoeter, R. Voyles, and K. B. Yesin, “Reconfigurable robots for distrib-
uted robotics,” in Proc. Government Microcircuit Applications Conf., Ana-
heim, CA, 2000, pp. 72-75.

[5] S.A. Stoeter, P.E. Rybski, M.D. Erickson, M. Gini, D.F. Hougen, D.G.
Krantz, N. Papanikolopoulos, and M. Wyman, “A robot team for explo-
ration and surveillance: Design and architecture,” in Proc. Sixth Int. Conf.
Intelligent Autonomous Systems, Venice, Italy, 2000, pp. 767-774.

[6] The Common Object Request Broker: Architecture and Specification. Needham,
MA: Object Management Group, 1998.

DECEMBER 2002 IEEE Robotics & Automation Magazine 47

We plan to explore new
communications technologies in

order to increase the range and data
rate of the RF communications link.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 23,2010 at 20:46:33 UTC from IEEE Xplore. Restrictions apply.

[7] C.L. Liu and J.W. Layland, “On the complexity of fixed-priority schedul-
ing of periodic, real-time tasks,” J. Assoc. Comput. Mach., vol. 20, no. 1,
pp. 46-61, 1973.

[8] P.E. Rybski, S.A. Stoeter, M.D. Erickson, M. Gini, D.F. Hougen, and N.
Papanikolopoulos, “A team of robotic agents for surveillance,” in Proc.
Int. Conf. Autonomous Agents, Barcelona, Spain, 2000, pp. 9-16.

Paul E. Rybski received an interdisciplinary B.A. in math/
computer science with an emphasis in cognitive science in
1995 from Lawrence University in Appleton, Wisconsin,
USA. He received his M.S. in computer and information sci-
ences in 2000 at the University of Minnesota and is currently
pursuing a Ph.D. in computer science with a minor in cogni-
tive science at the same institution. His research interests in-
clude behavior-based control, distributed robotic teams, and
robotic navigation/localization.

Sascha A. Stoeter obtained his M.S. in computer and infor-
mation sciences in 1997 from the University of Minnesota.
Before entering the Ph.D. program in Minnesota, he was a re-
search assistant at the Institute for Robotics and Process Con-
trol in Braunschweig, Germany.

Nikolaos P. Papanikolopoulos received the Diploma de-
gree in electrical and computer engineering from the National
Technical University of Athens, Athens, Greece, in 1987 and
the M.S.E.E. and the Ph.D. in electrical and computer engi-
neering from Carnegie Mellon University in Pittsburgh, Penn-
sylvania, USA in 1987 and 1992, respectively. He is currently a
professor in the Department of Computer Science and Engi-
neering at the University of Minnesota and the director for the
Center for Distributed Robotics. His research interests include
robotics, computer vision, sensors for transportation applica-
tions, and control. He has authored or coauthored more than
140 journal and conference papers in the above areas (35 refer-
eed journal papers). He was a McKnight Land-Grant Professor
at the University of Minnesota from 1995-1997 and has re-
ceived the NSF Research Initiation and Early Career Develop-
ment Awards. He was also awarded the Faculty Creativity
Award from the University of Minnesota. Finally, he has re-
ceived grants from DARPA, Sandia National Laboratories,
NSF, INEEL, Microsoft, USDOT, MN/DOT, Honeywell,
and 3M.

Ian Burt has a B.S. degree in mechanical engineering and is
currently working towards his M.S. in the Department of
Mechanical Engineering through the University of Minne-
sota. He was worked in the Center for Distributed Robotics
for the past two years. He has also competed in eight robotic
combat tournaments across the United States (including
Battlebots) over the last two years.

Tom Dahlin is an electronics design consultant specializing
in microprocessor-based sensor and motor control applica-
tions. He graduated from Northern Michigan University in
1979 with a B.S. in math/computer science. He now works
for the 3M company in St. Paul, Minnesota, USA, as a senior
engineering specialist in the corporate research and develop-

ment group. Prior employment includes design engineering
positions with Honeywell and Stratasys.

Maria Gini is a professor at the Department of Computer
Science and Engineering of the University of Minnesota. She
has received the Continuing Education and Extension Distin-
guished Teaching Award (1995), the Morse-Alumni Distin-
guished Teaching Professor of Computer Science (1987), the
Outstanding Professor Award (1986 and 1993), the Full-
bright-Hays Fellowship (1979), and the NATO Fellowship
(1976). She was the editorial program cochair of the Interna-
tional Conference on Autonomous Agents (Agents’ 2000) in
Barcelona, Spain, May 2000. She was also a member of the
Advisory Board of IJCAI-99. She is on the editorial board of
Autonomous Robots and Integrated Computer-Aided Engineering.
Finally, she is member of the Executive Council of the AAAI
Special Interest Group on Manufacturing.

Dean F. Hougen received his B.S. in computer science from
Iowa State University in 1988 with minors in mathematics
and philosophy. He received his Ph.D. from the University of
Minnesota in 1998, also in computer science, with a graduate
minor in cognitive science. After serving as an assistant profes-
sor in the Department of Computer Science and Engineering
and associate director of the Center for Distributed Robotics,
both at the University of Minnesota, Dr. Hougen moved to
the School of Computer Science at the University of Okla-
homa, where he has founded the Robotic Intelligence and
Machine Learning Laboratory. His research includes distrib-
uted heterogeneous robotic systems, learning (reinforcement,
connectionist, and memetic) in real robots, and evolutionary
computation.

Donald G. Krantz received his Ph.D. in computer and in-
formation sciences from the University of Minnesota. He is
currently vice president of the Advanced Systems Division of
MTS Systems Corporation. Dr. Krantz was previously a prin-
cipal investigator and program manager at MTS. MTS designs
and builds complex computer-controlled systems to simulate
physical phenomena for testing and research (www.mts.com).
Prior to joining MTS, Dr. Krantz was an Alliant Techsystems
Fellow and a Honeywell Fellow.

Florent Nageotte graduated from the Ecole Nationale
Superieure de Physique (engineering school) and from the
university of Strasbourg, France, in 2000. He is a Ph.D. stu-
dent in LSIIT (UMR CNRS/ULP 7005), Strasbourg. His re-
search interests include visual servoing and surgical robotics,
especially the use of visual servoing to improve robotized lap-
aroscopic surgery.

Address for correspondence: Nikolaos Papanikolopoulos, Cen-
ter for Distributed Robotics, Department of Computer Sci-
ence and Engineering, University of Minnestoa, Minneapolis,
MN 55455 USA. E-mail: npapas@cs.umn.edu. URL:
http://distrob.cs.umn.edu.

DECEMBER 2002IEEE Robotics & Automation Magazine48

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 23,2010 at 20:46:33 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

