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mnidirectional sensors hold a great promise for robot localization and
navigation. However, the limited payload volume of miniature robots
makes the use of omnidirectional vision sensors almost impossible. We
overcame this problem by moving the robot around in order to create
panoramic images. In addition to the general problems for building

mosaics (i.e., computing the warping functions), this framework also has to take
into account the noisy images delivered by the miniature robot. Two methods are
presented. The solution for the general case allows for large rotations and a zoom
factor. A special case, in which the homography is approximated by translations
caused by minor changes in the optical system, is also considered, as computation
time can be reduced significantly in this case.

Panoramic images require expensive lenses and custom-made hardware that, due
to volume constraints, many robots (especially miniature ones) cannot accommo-

date. As a more cost effective alternative, a robot in front of a complex scene
could restitute this landscape by taking several pictures and then trying to

piece them together. This process, called “mosaicking images,” tries to
recreate a continuous picture from several overlapping images taken from
the same scene. However, the result of this intuitive approach will be
poor because of perspective distortions that appear when the camera is
spun around its axes.

Hostage and disaster rescue missions, as well as toxic atmosphere
surveillance, are two examples in which the use of robots can be
beneficial to save human lives. We have developed a heterogeneous
robot team consisting of two kinds of robots for these environments.
The cylindrical Scout robot [1] is 11 cm long, 4 cm in diameter, and

is equipped with a video camera (Figure 1). Locomotion is accom-
plished through a unique combination of rolling and jumping. The

much larger Ranger robot is used to deploy Scouts in their area of opera-
tion and provides for computational resources.
Remote human rescue personnel desire to be provided with a complete

and high-resolution view of a Scout’s surrounding area. This is achieved by using
the Scout’s video camera as a visual sensor for mosaicking images. The small size
of the Scout and its limited transmission power complicate the creation of
mosaics because of noise in the images. Two video transmission frequencies are
available. At the 900 MHz range, the signal penetrates objects or walls more eas-
ily than at the 2.4 GHz range. However, the higher frequency provides a clearer
signal under the condition of line-of-sight.

The remainder of this article gives an overview of related work and intro-
duces the proposed method for mosaicking images. Experimental results are pre-
sented, and the article closes with a conclusion and suggestions for future
research directions.
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Related Work
Mosaicking of images has been in practice since long
before the age of digital computers. Shortly after the pho-
tographic process was developed, photos were applied to
topographical mapping [2]. Images acquired from hilltops
or balloons were manually pieced together. After the
development of airplanes, aerial photography became an
exciting new field. The limited flying heights of the early
airplanes and the need for large photo-maps forced imag-
ing experts to construct mosaic images from overlapping
photographs. This was initially done by manually mosaick-
ing images that were acquired by calibrated equipment [3].
Starting in the second half of the 20th century, the need
for mosaicking continued to increase as satellites began
sending pictures from space.

With improvements in computer technology, computa-
tional techniques were developed to solve the mosaicking
problem. The construction of mosaic images and the use of
such images have been active areas of research in recent years.
There has been a variety of new additions to the classic
applications mentioned previously that aim primarily to
enhance image resolution and the field of view. Image-based
rendering [4], which combines the two complementary
fields of computer vision and computer graphics [5], has
become a major focus of attention. In computer graphics
applications, images of the real world have traditionally been
used as environment maps. In early applications, such envi-
ronment maps were single images captured by fish-eye lenses
or a sequence of images captured by wide-angle rectilinear
lenses used as faces of a cube.

Mosaicking images on smooth surfaces allows an unlimited
resolution and avoids discontinuities that can result from
images acquired separately. Such immersive environments
provide the users with an improved sense of presence in a vir-
tual scene. A combination of such scenes used as nodes allows
the users to navigate through a remote environment [6].
Computer vision methods can be used to generate intermedi-
ate views between the nodes.

As a reverse problem, the three-dimensional (3-D) structure
of scenes can be reconstructed from multiple nodes [7]. Among
other major applications of image mosaicking in computer vision
are image stabilization, resolution enhancement, and video pro-
cessing. An overview of mosaicking can be found in [8].

There are many efforts that include the development and
use of omnidirectional cameras (mounted often on larger
mobile robots). Nayar and his team [9] studied various
aspects of omnidirectional vision, including the computation
of ego-motion using omnidirectional cameras. Geyer and
Daniilidis [10] worked on calibration issues for catadioptric
cameras. Menegatti and Pagello [11] studied the use of
omnidirectional vision in the problem of mapping a multi-
robot system. Suzuki et al. [12] discussed behavior learning
for a robot that possessed omnidirectional sensors. An
extensive overview of omnidirectional vision research efforts
can be found in [13] and in the Proceedings of the IEEE
Workshops on Omnidirectional Vision.

Mosaicking Images
The fundamental input for all mosaicking methods is a set of
images. Their positions with respect to each other must be
determined in order to merge them into a single mosaic. In
the following, it is assumed that two neighboring images
share at least an empirically chosen 15% of their content, and
that the images present enough features to compute their rela-
tive positions. The rotational and scaling factors should stay
similar, and the optical distortion should be insignificant.
Only grayscale images are used.

The images are preprocessed before any other steps to
improve the accuracy of the results. First, a low-pass filter
such as a Gaussian 3 × 3 filter is applied to reduce the noise
and to smooth the images. An MDIF, a first-order derivative
filter, is then applied, which is the combination of a low-
pass filter and a derivative operator. Finally, the gradient is
calculated, and the image is normalized.

General Method
In the general case, the parameters of the camera taking
images from its surroundings can change from one image to
the next. It is therefore important to take all the factors (i.e.,
shift, scaling, and rotation around the several axes of the cam-
era) into account for an exact mosaic. The noise in the images
should be relatively low.

Derivation of Relationships
Rotation, scaling, and shift factors between two images must
be characterized. Let p = (x, y)T be the coordinates of a
point in the first image and p′ = (x′, y′)T the coordinates of
the same point in the second one. A two-dimensional (2-D)
affine transformation is described by p′ = �p + t, where t
represents the translation vector and � contains the rotating
factors and the scaling factor. With the introduction of two
variables to correct the perspective, the complete transforma-
tion can be written as a homogeneous matrix H:(X ′

Y ′

W

)
=

( a11 a12 a13

a21 a22 a23

a31 a32 1

)
︸ ︷︷ ︸

H

( x
y
1

)
. (1)

Figure 1. The miniature Scout robot.
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Finally, the link between X ′

and x′ is given by x′ = X ′/W
and the one for Y ′ and y′ is
y′ = Y ′/W .

To descr ibe the motion
between two images, the fac-
tors of H are solved for by
using the following:

x′ = a11x + a12 y + a13

a31x + a32 y + 1
(2)

y′ = a21x + a22 y + a23

a31x + a32 y + 1
. (3)

The eight unknown parameters can be calculated without
any 3-D information by using the correspondences between
the points of the images as described in the following. Con-
sequently, one of the two images has to be transformed by
(2) and (3) into the base of the other in order to obtain an
exact mosaic.

Detecting Image Correspondences
The relative positions of two images with respect to each
other are detected by finding the best fit of points with strong
curvature radii. A Harris detector is used to find these points
that corresponds to perceived corners [14]. A corner is a point
exhibiting a sturdy intensity change in several directions.
Considering the four elementary directions, at least two of
them must undergo a significant intensity change. If I(x, y) is
defined to be the intensity value of an image in point (x, y),
then Ix is the derivative image with respect to x, and Iy is the
derivative image with respect to y. With the Î ’s denoting
Gaussian operators, M is defined as:

M =
(

Î2
x Îx Iy

Îx Iy Î2
y

)
. (4)

Note that the Gaussian operator must be applied to the image
containing the squares of the derivatives, not to the raw
image. The Prewitt masks are used to calculate the derivatives.
Two small eigenvalues in M designate a constant intensity
region, one large and one small eigenvalue designate an edge,
and two large eigenvalues designate a corner. If both eigenval-
ues of M are large, it means that a small displacement in any
direction will cause a significant change in the intensity level.
This means that this point is a corner. The corner-responding
function is defined as:

R
(
x, y

) =
(

k + 1
k

)
|det (M)|

− |trace (M)2 − 2 det (M)|. (5)

Thus, the sharper the corner, the higher the value of
R

(
x, y

)
. The best corners are selected with an appropriately

chosen threshold. Harris recommends an empirically chosen
k = 0.05.

Finding correspondences between two pictures is therefore
simplified to finding correspondences between the two sets of
corners from the images. A corner in one image is selected
and given a mark for each possible combination with the cor-
ners from the other image.

A correlation is computed by multiplication, and the result
is normalized to the range of [−1, 1] for comparing matched
corners. The best score defines the corresponding corners.
Scores near 1 mean that corners are similar, while those close
to −1 are considered different. Once the corresponding cor-
ners are found, only the best pairs are kept.

Resolution of Levenberg-Marquardt
The homography of two pictures taken from the same scene
and the same point can be determined by (2) and (3). Given
the matched corners of these images, the energy function
E = ∑

i((x
′
i, y′

i) − f(xi, yi))
2 which is the sum of the

squared distances between the corners of one image and the
projection of the corresponding corners in the same basis
must be minimized. The homography f , minimizing this
value, presents the best possible solution (i.e., the eight para-
meters a i j that minimize this sum must be found). The mini-

Figure 2. Mosaic from eight images with parametric intensity adjustment.

Figure 3. Experimental setup.
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mization of this quadratic function with eight parameters is
realized with the method of Levenberg-Marquardt. While an
empirically derived matrix can be used as an initial estimate of
the homography, a better initial estimate can be obtained from
the optimized method presented in the following section.

Optimized Method
While universally applicable, the presented method has a sig-
nificant drawback: It takes unacceptably long to compute the
parameters. Reviewing the initial problem, it can be found
that the robot used to obtain the images only moves to a small
extent, and that the sequence of images is known. The differ-
ence between the resulting images is roughly a shift with a
small distortion, due to the modification of the rotational and
scaling factors. Thus, only translation must be accounted for.
The shift can be determined by means of a simple correlation.
A template is extracted from one image, and its correspon-
dence calculated in the other image through convolution.
The area of interest can be restricted, as the motion of the
Scout is known to a certain extent. Vertical displacement is
expected to be less than 10%, while the horizontal displace-
ment is mostly a function of the heading change.

The match can be found either via subtraction or multipli-
cation. First, the correlation is obtained by the computation-
ally less demanding subtraction. If the result of the sum is
higher than a certain level of doubt, the correlation is estab-
lished by multiplication. The fluctuation between two images
(i.e., the Gaussian intensity differences) is accounted for by a
similarity measure 8 σ , where a typical value for σ is 2.5.

After calculating the shifts, the images can be merged into
a single panoramic mosaic. The intensity values in the over-
lapping regions are adjusted with a parametric function. A
typical result of this algorithm is shown in Figure 2.

In order to make the routine completely automated, the
program should be able to detect when the Scout has com-
pleted a full circle. A separate template serves as the termina-
tion criterion. A backup termination criterion is available to
increase the robustness of the algorithm. This criterion stops
the computation after the mosaic has reached a certain size.
The resulting mosaic covers more than 360◦ in this case.

Experimental Results
The methods were embedded into an existing distributed soft-
ware architecture [15], and experiments were set up to verify
the presented method. As shown in Figure 3, a Scout was
instructed to rotate in the horizontal plane. Images were taken
at fixed intervals when the robot was fully stopped, in order to
prevent interference from the motors. The video was trans-
mitted wirelessly at both 900 MHz and 2.4 GHz. At the
lower frequency, a significant amount of noise was visible in
the images for a typical office environment as the one used
for the experiments. In addition, a high quality Panasonic
video camera, and a Sony digital still camera from the two-
megapixels class with virtually noiseless images were tested.

Only perfect mosaics are counted as a success. A failure is
registered if just a single correspondence could not be estab-

lished. The mosaic is still usable in these cases, as the other
images were fit correctly. 

The mosaics were classified by hand. The Scouts operate
in vastly different environments, which prevents facile

assumptions that could help in automatically determining fail-
ures in order to adjust the matching parameters.

Results of the General Method
The general method was evaluated by merging three images
into a mosaic. The small number of images is a direct result
from the high computational complexity of this method. One
image is chosen as the basis into which the other images are
transformed.

Figure 4 shows a mosaic obtained from this method using
the clearer 2.4 GHz frequency. The success rate of the
method is 60% when executed automatically. With human
assistance in selecting an appropriate number of corners to
base the correlation on, the success rate increased to 89%.
The operation took four minutes on a Pentium II 450 MHz
Linux workstation, with most of this time spent on finding
the correspondences.

Results of the Optimized Method
The shift was determined correctly in 95% of the tests runs
for less noisy images. For noisy images, such as the ones
produced by the 900 MHz transmitter, the success rate of
properly merging all images of a mosaic was 20%. To
increase the success rate, a function that determines the
noise level was added. If too much noise was detected, the
image is discarded and another one taken. This way, the
error rate dropped to 10%.

Run-time for the examples presented in Figure 5 was
about three minutes on the described computer. This is a dra-
matic increase in speed from the general method in which
only three images were merged.

Summary and Conclusions
Two methods of mosaicking images were developed, one for
the simple case of a shift between two following images and
another one for the general case. For the simple mosaicking,
the error rate is acceptable for both cases of noisy or less noisy
images. Owing to the fact that future generations of Scouts
will be provided with the 2.4 GHz transmission frequency,
panoramic mosaics can be created with a high level of success.
The operation is completely automated, and the execution
time is close to three minutes for each mosaic.

The limited payload volume of
miniature robots makes the use of

omnidirectional vision sensors
almost impossible.
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For the case of mosaicking images in general, the major
problem is that the quality of the images given by the Scout
does not allow for choosing a small number of points for the
Harris detector. This leads to long execution times. Further-
more, it is extremely hard to realize a panoramic vision by
such a method because it is still unreliable without the inter-
vention of an operator. Building 360◦ mosaics is not practical.
Nevertheless, the general method can be used for creating
precise mosaics of three consecutive images, thus providing
wide angle images. Images resulting from this operation rep-
resent 100◦ mosaics. Alas, the time of calculation is still a con-
siderable four minutes.

Future Work
For the optimized method, computation speed is a minor
reason for concern. Execution time could be reduced by
decreasing the size of the search area while realizing a
closed-loop control on the motion of the Scout. Feedback
on the rotation of the Scout’s wheels would allow for a
reduced search area. This problem could be solved by a
faster computer.

For the general method, execution time should be
reduced and the success rate of the operation increased. A

more reliable way of matching corners would address both
problems. The use of parametric corners promises to yield
improved results. Nevertheless, the presented theory is still
correct and can be applied to the case of an elevated Scout.
Research is currently underway for a grappling hook attach-
ment to the Scout, allowing it to elevate itself onto a roof. A
set of images could be taken during the elevation process to
create a mosaic.

Given the new functionality of a 360◦ view, exciting new
opportunities arise. As the Scout has increased awareness of its
environment, it can act in a more educated way. Additional
functions could also be implemented easily (e.g., determining
the horizon).
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Figure 4. An example of the general method.

(a) Left (b) Middle

(d) Mosaic

(c) Right

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 23,2010 at 20:44:38 UTC from IEEE Xplore.  Restrictions apply. 



DECEMBER 2004 IEEE Robotics & Automation Magazine 67

Keywords
Panoramic imaging, mosaicking, miniature robots, omnidi-
rectional camera systems.

References
[1] P.E. Rybski, N.P. Papanikolopoulos, S.A. Stoeter, D.G. Krantz, K.B.

Yesin, M. Gini, R. Voyles, D.F. Hougen, B. Nelson, and M.D. Erickson,
“Enlisting rangers and scouts for reconnaissance and surveillance,” IEEE
Robot. Automat. Mag., vol. 7, no. 4, pp. 14–24, 2000.

[2] P.R. Wolf, Elements of Photogrammetry. New York: McGraw-Hill, 1983.
[3] P. Kolonia, “When more is better,” Popular Photography, vol. 58, no. 1,

pp. 30–34, Jan. 1994.
[4] S.B. Kang, “Survey of image-based rendering techniques,” in SPIE

Videometrics VI, vol. 3641, 1999, pp. 2–16.
[5] J. Lengyel, “The convergence of graphics and vision,” Computer, vol. 31,

no. 7, pp. 46–53, 1998.
[6] S.E. Chen, “QuickTime VR—an image-based approach to virtual envi-

ronment navigation,” in Proc. of SIGGRAPH, Los Angeles, CA, 1995, pp.
29–38.

[7] H.-Y. Shum, M. Han, and R. Szeliski, “Interactive construction of 3d
models from panoramic mosaics,” In Proc. IEEE Computer Soc. Conf.
Computer Vision and Pattern Recognition, Santa Barbara, CA, 1998, pp.
427–433.

[8] S. Gumustekin (July 1999). An introduction to image mosaicing
[Online]. Available:
http://likya.iyte.edu.tr/eee/sevgum/research/mosaicing99/

[9] J. Gluckman and S. Nayar, “Ego-motion and omnidirectional cameras,”
in Proc. ICCV, 1998, pp. 999–1005.

[10] C. Geyer and K. Daniilidis, “Catadioptric camera calibration,” in Proc.
ICCV, 1999, pp. 398–404.

[11] E. Menegatti and E. Pagello, “Omnidirectional distributed vision for
multi-robot mapping,” in Proc. Int. Symp. on Distributed Autonomous
Robotic Systems (DARS02), Fukuoka, Japan, 2002.

[12] S. Suzuki, T. Kato, M. Asada, and K. Hosoda, “Behavior learning for a
mobile robot with omnidirectional vision enhanced by an active zoom
mechanism,” in Conf. Rec. IEEE/IAS Annu. Meeting,, 1998 pp.

244–249.
[13] R. Benosman and S.B. Kang, Panoramic Vision: Sensors, Theory and

Applications. New York: Springer Verlag, 2001.
[14] C. Harris and M. Stephens, “A combined corner and edge detector,”

in Proc. 4th Alvey Vision Conf., 1988, pp. 147–151.
[15] S.A. Stoeter, P.E. Rybski, M.D. Erickson, M. Gini, D.F. Hougen, D.G.

Krantz, N. Papanikolopoulos, and M. Wyman, “A robot team for
exploration and surveillance: Design and architecture,” in Proc. Int.
Conf. Intelligent Autonomous Systems, Venice, Italy, 2000, pp. 767–774.

Christian C. Dos Santos received a diploma of engineer in
robotics and computer science in 2001 from “Ecole Nationale
Superieure de Physique” in Strasbourg, France. He also
obtained the French equivalent of an M.S. in computer sci-
ence and cybernetics the same year in the same institution.
He is working on the development of an integrated validation
station for the first totally interactive biochemistry analyzer.

Sascha A. Stoeter obtained his M.S. and Ph.D. degrees in
computer and information sciences in 1997 and 2003, respec-
tively, from the University of Minnesota. Before entering the
Ph.D. program in Minnesota, he was a research assistant at the
Institute for Robotics and Process Control in Braunschweig,
Germany. He is a member of the IEEE and Computer Pro-
fessionals for Social Responsibility.

Paul E. Rybski received an interdisciplinary B.A. in
math/computer science, with an emphasis in cognitive sci-
ence, in 1995 from Lawrence University in Appleton, Wis-
consin. He received the M.S. in computer and information
sciences in 2000 at the University of Minnesota and his Ph.D.
in computer science, with a minor in cognitive science at the

Figure 5. Examples of simple mosaics generated by the optimized method.

(a) Panasonic Camera, Nine Images

(b) Wireless 2.4-GHz Transmission, Nine Images

(c) Wireless 900-MHz Transmission, Ten Images

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 23,2010 at 20:44:38 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Robotics & Automation Magazine DECEMBER 200468

same institution. His research interests include distributed
robot control strategies, probabilistic algorithms for automated
navigation/localization, visual feature-detection algorithms for
servoing applications, human/robot interfaces, and develop-
ment of real-time algorithms for embedded control systems.
He is a Member of the IEEE, ACM, and AAAI.

Nikolaos P. Papanikolopoulos received the Diploma
degree in electrical and computer engineering from the
National Technical University of Athens, Athens, Greece, in
1987, the M.S.E.E. in electrical engineering from Carnegie
Mellon University (CMU), Pittsburgh, Pennsylvania, in 1988,
and the Ph.D. in electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, Pennsylvania, in
1992. Currently, he is a professor in the department of com-
puter science at the University of Minnesota and director of
the Center for Distributed Robotics. His research interests
include robotics, sensors for transportation applications, con-
trol, and computer vision. He has authored or coauthored
more than 170 journal and conference papers in these areas

(41 refereed journal papers). He was finalist for the Anton
Philips Award for Best Student Paper in the 1991 IEEE Int.
Conf. on Robotics and Automation and recipient of the best
Video Award in the 2000 IEEE Int. Conf. on Robotics and
Automation. He was recipient of the Kritski fellowship in
1986 and 1987. He was a McKnight Land-Grant Professor at
the University of Minnesota for the period 1995-1997, and
has received the NSF Research Initiation and Early Career
Development Awards. He was also awarded the Faculty Cre-
ativity Award from the University of Minnesota. One of his
papers (co-authored by O. Masoud) was awarded the IEEE
VTS 2001 Best Land Transportation Paper Award. He has also
received grants from DARPA; Sandia National Laboratories;
NSF; Microsoft; INEEL; USDOT, DHS, and Air Force;
MN/DOT; Honeywell; and 3M.

Address for Correspondence: Nikos Papanikolopoulos, Depart-
ment of Computer Science and Engineering, University of
Minnesota, Minneapolis, MN 55455 USA. E-mail: npapas@
cs.umn.edu.

Science, University of Crete, Greece, in visual motion
analysis. He has been a postdoctoral fellow at the Royal
Institute of Technology in Stockholm, Sweden, where he
worked on vision-based, reactive robot navigation. In 1999
he joined the Computational Vision and Robotics Labora-
tory of ICS-FORTH, where he has been involved in many
RTD projects in image analysis, computational vision and
robotics. His current research interests include computa-
tional vision and robotics and particularly the visual per-
ception of motion and 3-D structure, the development of
robot behaviors based on visual information and alternative
visual sensors.

Dimitris P. Tsakiris is a research scientist at the Institute of
Computer Science of FORTH and a visiting professor at the
University of Crete. He received his B.S. degree from the
Department of Electrical Engineering of the National Tech-
nical University of Athens and his M.S. and Ph.D. degrees
from the Department of Electrical Engineering of the Uni-
versity of Maryland at College Park. Prior to his current
position, he was a Marie Curie postdoctoral fellow in

INRIA, Sophia-Antipolis. His research interests lie in the
areas of sensor-based robotics, nonlinear control, undulatory
locomotion, geometric mechanics, and computational vision.
He is a principal investigator and coinvestigator of several
European IST projects and research networks related to these
research areas.

Cédric Groyer is a research and development engineer at
the Computational Vision and Robotics Laboratory of
ICS/FORTH. He received his B.Sc. degree in École
Nationale Supérieure de Physique de Marseille, with major
in Signal Processing. His interests include image processing
and computer vision, with emphasis on their application to
mobile robotics.

Address for Correspondence: Dimitris P. Tsakiris, Institute of
Computer Science-FORTH, Vassilika Vouton, P.O. Box
1385, GR-71110 Heraklion, Greece. Tel.: +30 2810 391708.
Fax: +30 2810 391601. E-mail: tsakiris@ics.forth.gr. URL:
http://www.ics.forth.gr/~tsakiris.

Biomimetic Centering Behavior
BY ANTONIS A. ARGYROS, DIMITRIS P. TSAKIRIS, AND CÉDRIC GROYER

(continued from page 30)

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 23,2010 at 20:44:38 UTC from IEEE Xplore.  Restrictions apply. 


	footer1: 


