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Abstract— This paper addresses the problem of Simul-
taneous Localization and Mapping (SLAM) for the case
of very small, resource-limited robots which have poor
odometry and can typically only carry a single monocular
camera. We propose a modification to the standard SLAM
algorithm in which the assumption that the robots can
obtain metric distance/bearing information to landmarks
is relaxed. Instead, the robot registers a distinctive sensor
“signature”, based on its current location, which is used to
match robot positions. In our formulation of this non-linear
estimation problem, we infer implicit position measurements
from an image recognition algorithm. The Iterated form of
the Extended Kalman Filter (IEKF) is employed to process
all measurements.

I. I NTRODUCTION

Solving the Simultaneous Localization and Mapping
(SLAM) problem for small, resource-limited robots means
doing so without the aid of good odometric estimates and
accurate metric range sensors. This causes a problem for
traditional solutions to the SLAM problem which typically
require one or both of the above. The motivating factor
for this research is the necessity of doing SLAM on
custom miniature robots called Scouts [15] (Fig. 1) that
our research group has developed. Scouts, due to their
small size, are limited to a monocular camera as their only
exteroceptive sensor. Their limited computing capabilities
also makes them totally dependent on a wireless proxy-
processing scheme in which off-board workstations handle
their control and video processing.

We propose a modification to the standard SLAM
algorithm in which we relax the assumption that the robots
can obtain metric distance information to landmarks. In
our approach, we obtain purely qualitative measurements
of landmarks where a location “signature” is used to match
robot poses. We describe a method by which the Iterated
form of the Extended Kalman Filter (EKF) processes
all measurements, including both actual odometric and
inferred relative positions, and estimate the coordinates
of the locations where images were recorded along the
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Fig. 1. A Scout robot with an upward-facing Omnitech 190◦ fisheye
lens. The robot is11 cm long and4 cm in diameter.

trajectory of the robot. In this method, landmarks corre-
spond to images taken at various(x, y) positions of the
robot.

II. RELATED WORK

The Extended Kalman Filter has been used for localiz-
ing [9] and performing SLAM [18] on mobile robots for at
least a decade. Our approach differs from traditional EKF
estimators in that we do not have the ability of resolving
specific geometric information about the landmarks we ob-
serve in our environment. Instead, the landmark positions
are explicitly coupled to the position of the robot.

Bayesian methods have also been used for mobile
robot localization (such as Markov Localization) and
mapping [19] where the modes of arbitrary robot pose
distributions are computed. Statistical methods such as
Monte Carlo localization [20] use sampling techniques
to more quickly estimate the distribution of possible robot
poses. Both of these methods typically use very accurate
sensors and/or robots with very accurate odometry that
allow them to resolve accurate maps over large distances.

Structure from motion [2] algorithms compute the cor-
respondences between features extracted from multiple
images to estimate the geometric shape of landmarks as
well as to estimate the robot’s pose. While we use a vision
system to identify locations by their feature signatures,
features are not explicitly tracked. In practice, our vision
system could be replaced by any other kind of boolean
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sensor modality which can report whether the robot has
re-visited a location.

In contrast to explicit metric-based methods, more qual-
itative methods such as topological maps of nodes have
been used as well [17]. Of special note is the representa-
tion suggested by Ben Kuipers [8] in his Semantic Spatial
Hierarchy (SSH). Locations are explicitly designated by
distinctive (but not necessarily unique) sensor signatures.
In [22], image “signatures” captured from an omnidirec-
tional camera are used to construct a topological map of
an environment by generating histograms of the RGB and
HSV (Hue, Saturation, and Value) components.

Finally, physics-based models that involve spring dy-
namics have been used quite effectively to find minimum
energy states in topological map structures [4], [6]. We
have had some success with these methods [16] but have
found that the parameter choices for the models tend to
be very important and that numerically solving for the set
of non-linear equations can be unstable.

III. A PPEARANCE-BASED SLAM

Mobile robots like the Scout have wheel encoders that
count revolutions. From these counts, odometric measure-
ments of linear and rotational velocity can be calculated.
By appropriately integrating this kinetic information, the
robot is able to track its pose for a limited period of time.
If no absolute positioning measurements are recorded by
the robot, the noise in the velocity measurements will
eventually cause the computed pose estimates to diverge
from their real values. In order to provide periodic correc-
tions, additional information is necessary. In environments
where GPS measurements are not available, a robot will
have to use information about its surroundings for this pur-
pose. In previous implementations of SLAM algorithms,
it is frequently assumed that the robot is able to measure
its relative position with respect to features/landmarks [3],
[13] or obstacles [19] in the area that it navigates. This
implies that the robot carries a distance measuring sensor
such as a sonar or a laser scanner. For small scale robots
such as the Scout, this is not feasible due to weight, size,
and power limitations. An alternative approach is to use a
small camera and process relative angular measurements
to detected vertical line features, as described in [1].
However the applicability of this algorithm is conditioned
on the existence of a sufficient number of identifiable
vertical line segments along the trajectory of the robot.
Also it is geared toward position tracking while no attempt
is made to construct a map populated by these features.

In what follows, we describe and implement a novel
methodology that neither relies on any specific type of
visual features, nor requires distance measurements. The
basic idea behind our approach is to determine a unique
visual signature for distinct locations along the robot’s
path, store this and the estimated pose of the robot at

that time instant, and retrieve this information once the
robot revisits the same area. Determining whether the
robot is at a certain location for a second time is the key
element for providing positioning updates. By correlating
any two scenes, we infer a relative (landmark to robot, not
landmark to landmark) position measurement and use it to
update both the current and previous (at locations visited
in the past) pose estimates for the robot. This in effect will
produce an accurate map of distinct locations within the
area that the robot has explored. A Kalman filter estimator
is formulated for this purpose.

Before delving into the mathematical formulation of
the specific estimator we first discuss in more detail the
methodology we employ for assigning and registering
visual signatures to certain locations. Although the dis-
cussion hereafter is specific to area identification using
images from an omnidirectional camera, the remaining of
the approach (usage of the identity information by the
filter) can be extended to any type of exteroceptive sensor
that can be used for identifying an area (e.g. other sensors
which measure the magnetic, chemical or audio signature
of a location might also be used).

A. KLT Tracker and Location Identification

The Lucas-Kanade-Tomasi (KLT) feature tracker con-
sists of a registration algorithm that makes it possible to
find the best match between two images [11] as well
as a feature selection rule which is optimum for the
associated tracker under pure translation between sub-
sequent images [21]. We use an implementation of the
KLT algorithm∗ to identify and track features between
successive images as a method for determining the match
between two images. KLT features are selected from each
of the images and are tracked from one image to the next
taking into account a small amount of translation. The
degree of match is the number of features successfully
tracked from one image to the next. A total of 100 features
are selected from each image and used for comparison. For
the environments used in this paper, 80 or more tracked
features is considered a match between locations.

Our image indexing approach is similar in flavor to [10]
where a pyramid structure involving several levels of
dimensionality reduction are matched from the lowest
resolution to the highest. In our case, the KLT features
serve as a single level of reduction, but a completely
different feature extraction method is employed.

It is important to note that we are not attempting to track
the features over multiple frames of video. This technique
does not attempt to compute structure from motion on
this data primarily because we are ultimately interested in
making use of this algorithm on robots that do not have
real-time video processing capability.

∗Developed by Stan Birchfield [7].
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In our mapping formalism, the mobile robot travels
around an unknown area and stores images from its
camera. KLT is used to compare images recorded at
different locations along the trajectory of the robot. When
the received image does not match a previously recorded
one, we assume that this location is novel and we add
the current estimate for the position of the robot to the
state vector of landmarks. This constitutes an exploration
phase where the robot creates its world model. When the
robot encounters an image which matches a previously-
seen image, it considers this location to be the same and
updates its estimates of (1) the position of all landmarks
mapped and (2) its own pose.

We treat the KLT and omnicamera setup as a “virtual
sensor” that returns true or false as to whether the robot
has returned to a location that it has visited before.
This information can be used to infer a relative position
measurementZ = 02×1+Nz between the current position
of the robot and that of the same location visited in the
past. The accuracy of this measurementR = E{NzNT

z }
can also be inferred by the locus of points (forming an
ellipsoid) around a location, with the characteristic that the
images recorded at each of them are considered identical
by the KLT. This inferred02×1 term reflects the nature
of the sensor modality where range or bearing readings
are not assumed to be available. Thus, the robot robot can
only assign its self-position estimate to the same position
as the landmark “signature” when it observes it. Since in
practice, it is extremely unlikely that the robot will actually
find itself in the exact same location that it was the first
time the sensor readings were taken, any uncertainty in the
spatial match at timek is captured in the sensor reading
covariance matrixR(k).

B. Kalman Filter Derivation

At this point we describe the process for formulating the
Extended Kalman filter required for estimating the current
pose of the robotXR = [xR yR φR]T and landmarks
XLi = [xLi yLi ]

T .
1) Propagation: For the vehicle’s odometry, we use

a generic set of equations. This allows the method to
be easily adapted to different types of vehicles. The
continuous time equations for the motion expressed in
local coordinates (with respect to a frame of reference
R attached to the robot) are:

RẋR = V, RẏR = 0, Rφ̇R = ω (1)

whereV andω are the real linear and angular velocity of
the robot. The same quantities, as measured by the wheel-
encoders’ signals in discrete time, are:

Vm(k) = V (k) + wv(k) (2)

ωm(k) = ω(k) + wω(k) (3)

wherewv(k), wω(k) are the zero-mean, white Gaussian
noise processes that contaminate the velocity measurement
signals with known covarianceQ(k) = E{WRW

T
R },

WR = [wv(k) wω(k)]T . By integrating the velocity mea-

surements, the state estimatêXR =
[
x̂R ŷR φ̂R

]T
is

propagated as:

x̂R(k + 1) = x̂R(k) + Vm(k)δt cos φ̂R(k) (4)

ŷR(k + 1) = ŷR(k) + Vm(k)δt sin φ̂R(k) (5)

φ̂R(k + 1) = φ̂R(k) + ωm(k)δt (6)

Based on Eqs. (1), (2), (3) the linearized discrete-time
error-state propagation equation in global coordinates is:

X̃R(k + 1) = ΦR(k + 1)X̃R(k) +GR(k + 1)WR(k)
(7)

with

ΦR =

1 0 −Vmδt sinφR
0 1 Vmδt cosφR
0 0 1

 , GR =

δt cosφR 0
δt sinφR 0

0 δt


(8)

where δt is the time interval between two consecutive
odometric measurements.

Since the coordinates of the landmark locationsXLi

do not change over time, the real, estimated, and error
“motion” equations for a landmarkLi are

XLi(k + 1) = XLi(k) (9)

X̂Li(k + 1) = X̂Li(k) (10)

X̃Li(k + 1) = IX̃Li(k) + 0WR(k) (11)

whereI is the2×2 identity matrix and0 is the2×2 zero
matrix. By augmenting the state vectorX with the poses
(to be estimated) of all the landmarksXLi along the pose
of the robotXR

X =
[
XT
R XT

L1
. . . XT

LN

]T
(12)

we can derive an expression for the error propagation
of this augmented state vector and the covariance matrix
associated with it:

X̃(k + 1) = Φ(k)X̃(k) +G(k)WR(k) (13)

Pk+1/k = Φ(k)Pk/kΦT (k) +G(k)QR(k)GT (k)
(14)

where

Φ(k) =


ΦR(k) 0 . . . 0

0 I . . . 0
...

...
...

...
0 0 . . . I

 , G(k) =


GR(k)

0
...
0

 (15)
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2) Update: Every time the robot takes an image of
its surroundings when it is atXR, it employs the KLT
algorithm to determine whether it matches any previously
seen locationsXLi , or whether it is a new oneXLj . In
either case the inferred relative position measurement is

Z(k + 1) = 02×1 +Nz(k + 1)
= RXLi +Nz (16)

From this, one can derive the following expressions for
the real and the estimated measurement

Z = CT (φR) (XLi − pR) +Nz (17)

Ẑ = CT (φ̂R)
(
X̂Li − p̂R

)
(18)

wherepR = [xR yR]T , p̂R = [x̂R ŷR]T and

C(φR) =
[
cosφR − sinφR
sinφR cosφR

]
(19)

is the rotation matrix that relates the orientation of the
frame of referenceR on the robot with the global coordi-
nate frame. By subtracting the previous two equations the
linearized measurement error is computed as

Z̃ = Z − Ẑ = HX̃ +Nz (20)

with

X̃ =
[
X̃T
R X̃T

L1
. . . X̃T

Li
. . . X̃T

LN

]T
(21)

H =
[
HR 0 . . . 0 HLi 0 . . . 0

]
(22)

Hr =
[
−CT (φ̂r) −CT (φ̂r)J

(
X̂Li − p̂r

)]
(23)

HLi = CT (φ̂r) (24)

andJ =
[
0 −1
1 0

]
. TheH(k+1) matrix is used to update

the state estimate for the pose of the robotXr and the
positions of the landmarksXLi every time an image is
recorded. The equations for the update cycle of the filter
are listed here for completeness:

r(k + 1) = Z(k + 1)− Ẑ(k + 1) (25)

S(k + 1) = H(k + 1)Pk+1/kH
T (k + 1) +R(k + 1)

(26)

K(k + 1) = Pk+1/kH
T (k + 1)S−1(k + 1) (27)

X̂k+1/k+1 = X̂k+1/k +K(k + 1)r(k + 1) (28)

Pk+1/k+1 = Pk+1/k −K(k + 1)S(k + 1)KT (k + 1)
(29)

Since the accuracy of this update depends on the accuracy
of the linearization, we employ the Iterated form of the
Extended Kalman filter (IEKF) [5], [12]. First, the IEKF
linearizes the measurement equation Eq. (20) around the
current estimateXk+1/k of the state and calculates the
updated state estimateXk+1/k+1 (like the EKF). Then
the filter resetsXk+1/k to its updated values and the same

process is repeated until it converges. The state covariance
Pk+1/k is not updated until after the state estimate has
converged because to do so would artificially and erro-
neously reduce the uncertainty in the measurements.

IV. EMPIRICAL VALIDATION

The Scout is a differentially-driven platform with a
wheelbaseα of 11 cm and a wheel radius of2 cm. The
Qr matrix from the state error covariance propagation in
Eq. (14) represents the covariance of the robot’s linear and
translational motions. For a differentially-driven platform,
where linear and rotational velocity are a function of the
left vl and rightvr wheelspeeds, i.e.Vm = (vl + vr)/2,
ωm = (vl − vr)/α, this matrix is defined as:

QR =
[

1
4 (σ2

vl
+ σ2

vr )
1

2α (σ2
vl
− σ2

vr )
1

2α (σ2
vl
− σ2

vr )
1
α2 (σ2

vl
+ σ2

vr )

]
(30)

whereσvl and σvr are the standard deviations of the
wheelspeed errors.

A. Simulation Experiment

This method was tested first on a simulated Scout robot.
The standard deviation of the estimated wheel encoder
error was 1.4 cm/s and the standard deviation of the
sensor error was1 cm. The true path of the simulated robot
is shown in Fig. 2(a) as a square that is traversed twice.
Without correcting for odometric error, the path of the
simulated robot is shown in Fig. 2(b). Sensor snapshots are
taken every0.5 m as the robot traverses the path. The first
time the robot observes landmark, it adds the estimated
positions to its map. When the robot revisits landmarks,
all landmark positions are updated by new measurements.

Figs. 2(c) and 2(d) show how the landmark positions
are updated as the first landmark is revisited. Figs. 2(e)
and 2(f) show how the landmark positions are updated as
the last landmark is revisited. Fig. 3 illustrates how the
estimated landmark positions are improved by using the
Iterated EKF. Fig. 4 shows the sensor residual with a3σ
upper and lower bounds of uncertainty.

B. Real-World Experiment

A sequence of images were taken with a Scout equipped
with an upward-facing 190◦ vertical/360◦ horizontal field
of view lens along a path that intersected itself five times.
An image was taken from the camera roughly every0.3 m.
Ground truth was measured by manually measuring and
labeling each location where an image was taken. The
KLT algorithm was used to track features between each
pair of images in order to find locations where the robot’s
path crossed itself.

Fig. 5(a) shows the true path of the robot and the
estimated path without error correction. Fig. 5(b) shows
again the odometric path estimate as well as the estimated
positions of the landmarks if there was no correction to
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(a) True path (b) Pose estimate

(c) BeforeL1 update (d) After L1 update

(e) BeforeL8 update (f) After L8 update

Fig. 2. Illustrations showing various stages of the Kalman update for
the simulated runs. The path starts from the lower left, moves counter-
clockwise, and is traversed twice. The scale is in meters.

their position. Fig. 5(c) compares the corrected positions
of the landmarks with the true path of the robot. Land-
marks occurred when the path intersected itself. There is
a slight offset of some of the landmark positions, but the
relative structure has greatly improved.

V. CONCLUSIONS ANDFUTURE WORK

We introduced a method for performing SLAM with
sensor-poor robots in which we formulate the EKF to relax
the assumption that our sensors return metric distance
information to landmarks. We have proposed the idea of
using conventional sensor modalities as a “virtual sensor”
which is used to determine whether the robot has returned
to a location that it has visited before. In this formalism,
landmarks are sensor signatures and indicate locations the
robot has visited. The virtual sensor is both the strength

Fig. 3. Effects of the iterative Kalman Filter on the position estimates.
Final landmark positions for 1, 2, and 4 iterations per update step are
shown.

Fig. 4. Plots showing the sensor residualr = z − ẑ and the3σ upper
and lower bounds of the residual covarianceS. These residuals are all for
landmark positions that have been visited a second time. These residuals
were computed with no iterations of the EKF.

and the weakness of the method as it allows correlations
to be found between locations that the robot has visited,
but global metric information, such as orientation, can be
difficult to capture (Fig. 5 shows a slight global misalign-
ment in rotation). We have shown the effectiveness of this
algorithm on simulated and real world data.

In this work, we assumed that sensor readings are
unique enough that obtaining the location of where they
cross is a simple matter of choosing a threshold of matched
features. This technique is only valid for environments in
which the individual locations have enough features to
be significantly different (e.g. perceptual aliasing effects
is ignored). In general, this is not the case and there
can be multiple locations that appear to be the same. In
future work, we will investigate the use of the Multiple
Hypothesis Tracking (MHT) extension to the EKF [14] as
a solution to this problem. MHT is capable of representing
more general probability distributions and is thus a more
appropriate representation of the landmark decision region
than a single ellipsoid. Additionally, this method will be
evaluated on different sensor modalities besides cameras.
Finally, since this is a passive mapping method that
is decoupled from exploration, we will explore how to
combine it with active sensing techniques.
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(a) True path of the robot vs. the erroneous
path caused by errors in odometry estimates

(b) The noisy odometric path estimate of the
robot and uncorrected landmark estimates.
The 1σ position uncertainty for each land-
mark are shown with dashed lines.

(c) The true path of the robot and corrected
landmark estimates. The1σ position uncer-
tainty for each landmark are shown with
dashed lines.

Fig. 5. Real world experiments in an indoor environment (scale is in meters). Landmarks in the true path occur wherever there is an intersection in
the path. Positions in the path are labeled chronologically and landmark positions are labeled as large dots.
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