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Abstract— Future driver assistance systems are likely to
use a multisensor approach with heterogeneous sensors for
tracking dynamic objects around the vehicle. The quality and
type of data available for a data fusion algorithm depends
heavily on the sensors detecting an object. This article presents
a general framework which allows the use sensor specific
advantages while abstracting the specific details of a sensor.
Different tracking models are used depending on the current
set of sensors detecting the object. A sensor independent
algorithm for classifying objects regarding their current and
past movement state is presented. The described architecture
and algorithms have been successfully implemented in Tartan
Racing’s autonomous vehicle for the Urban Grand Challenge.
Results are presented and discussed.

I. INTRODUCTION

Most of the existing commercial driver assistance systems
with environmental perception are designed for longitudinal
traffic in well structured environments (for example Adaptive
Cruise Control [1]). Currently new driver assistance systems
are being developed which work in more complex envi-
ronments and use a multisensor fusion approach to process
sensor data [2]. Examples are systems for intersection assis-
tance or systems that assist drivers in construction sites on a
highway.

One challenge that must be addressed is the distinction
of static and moving obstacles in these environments. Some
adaptive cruise control systems for example are designed to
not react to objects which have not been detected moving
by the system to avoid false reactions due to sensor artifacts
(where artifacts are defined as erroneous detections or mis-
interpretations). On the other hand future driver assistance
systems will be designed to work with static obstacles
like poles or guardrails, too. Analogous to moving obstacle
tracking [2], special algorithms exist to estimate the position
and shape of static obstacles. To reduce artifacts with these
algorithms it is important to distinguish static from dynamic
obstacles, too [4].

In well structured environments like on a highway sensor
artifacts are well understood and a distinction of static and
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moving obstacles can be done reliably. In more complex
environments like an urban setting new artifacts come into
play. Here a multisensor approach can help to make the
movement classification more robust using the available
redundancy.

On the other hand more sensors lead to an increased
complexity. Typical driver assistance systems today use a
single environmental sensor and a tracking model tied to
the characteristics of this sensor. When using heterogeneous
sensors which are based on different sensor technologies the
quality and type of the data now depends on the combination
of sensors detecting an object [5][6]. Besides that, differ-
ent sensors produce different kinds of misinterpretationsof
measurements, so called artifacts. These depend on sensor
internals like the detection mechanism and feature extraction
algorithms for example.

This article describes an architecture for sensor data fusion
which allows to incorporate the information of different
sensors in a generalized way. All sensor specific algorithms
are encapsulated in sensor specific modules with a general-
ized interface. This reduces the effort needed to extend the
system with new sensors or sensor technologies. Two sensor
independent algorithms implemented in this architecture will
be described which address the topics described above:
An adaptive model switching approach which deals with
the phenomenon of sensor dependent data quality, and a
movement classification algorithm which robustly combines
the information of different sensors to an overall movement
classification.

The architecture and algorithms have been successfully
implemented in Tartan Racing’s autonomous vehicle for the
Urban Challenge 2007 . Data from thirteen environmental
sensors with different detection modes has been fused into
a model of composite object hypotheses. The data was used
in a variety of applications including distance keeping, inter-
section handling and parking. The environment consisted of
an urban road network with intersections, sharp curves and
free traffic in open parking lots.

II. M ULTISENSORSETUP

A heterogeneous setup of thirteen different sensors were
used on Tartan Racing’s autonomous vehicle. Fig. 1 shows
the placement of these sensors and Table I lists the charac-
teristics of those sensors.

The RADAR sensors enable the robot to detect the pres-
ence of objects with the sensitivity at up to a distance of
200m. The RADAR and LASER units mounted on the pan
heads are used to detect cross traffic at intersections at a



Fig. 1. Sensor setup on Tartan Racing’s autonomous vehicle [5].
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sufficient distance to merge safely with traffic moving at
speeds up to 30mph. The RADARs measure Doppler shift
which allows direct measure of velocity which is more
accurate than having to estimate velocity from multiple
sequential distance measurements like the LASER sensors.
The features extracted from RADAR data are reported as a
set of 2D position coordinates that reflect the center of the
object along with an associated velocity of that point. The
fixed beam LASER sensors only return a 2D point, no direct
velocity measurement is possible.

The planar scanning LASER sensors return information
about the (2D) shape and orientation of a vehicle in the
near range [8]. The shape is computed from the intersection
of the plane of the beam with the object. The returned
shape is used to estimate the yaw angle and yaw rate of
the detected vehicle. Due to the fixed angular resolution of
the scanning lasers, the shape information at long distances is
not good enough to perform yaw estimation with the required
accuracy. As with the RADAR sensors the data however is
accurate enough to associate the information to lanes on the
road.

The 3D LASER scanner is the only sensor on the robot
that provides information about the shape of the object in
height as well as width and length. However, the effective
detection range of the sensor is not sufficient for autonomous
driving with merging and passing maneuvers in 30mph
traffic. Furthermore, the top of the vehicle occludes some of
the laser’s field of view and as such the laser cannot detect
objects that are extremely close to the vehicle (including a
large blind spot in the rear).

For the Urban Challenge no one sensor or sensor modality
was sufficient to provide enough information to track objects

around the vehicle. The multiple sensors provided complete
sensing coverage all around the vehicle and the combination
of RADARs and LIDARs allowed for long-range detection
of vehicles while still being able to estimate shape and
orientation as the vehicle approaches the robot. The multiple
sensors also provided redundancy in case of sensor failures
and artifacts.

III. M ODELING MOVING OBSTACLES

A. Tracking Model

Tracking algorithms like the Kalman filter use a model to
describe the dynamic properties of an object hypothesis [3].
The detail of the tracking model is defined both by the needs
of the application and the capabilities of the used sensors.

We propose an approach where the tracking model is
switched according to the available sensor information. Two
models were sufficient for all application scenarios of the
Urban Challenge and serve as an example in the following
part of the article: a box model and a point model.

The box model uses a fixed widthw and lengthl > w

to represent the shape of a vehicle whereas the point model
has no shape information. The box model uses the position
of the center of the boxx, y the yaw angleφ, raw angle rate
φ̇, a velocityv, and an accelerationa as state variables. The
velocity and acceleration are always in the direction of the
longer edge of lengthl. The state propagation equations are
based on a simple bicycle model [7] which couple thex and
y coordinates via the yaw angle and yaw rate.

The point model is described by 2 coordinates in the 2D
planex, y the corresponding velocitieṡx, ẏ and accelerations
ẍ, ÿ. A constant acceleration model is used for state propa-
gation [3]. The noise parameters adapt with the length and
direction of the velocity vector(ẋ, ẏ). This again couples the
x andy coordinates and—similar to the bicycle model—does
not constrain the model to a predefined direction defined
by the coordinate system. This way the model is usable
for tracking vehicles driving in an arbitrary and previously
unknown direction.

B. Movement Classification

Some applications need reliable information if an object
is potentially moving (like a vehicle) or if it is a static object
(like a pole or traffic cone). For an autonomous vehicle like
in the Urban Challenge this information is needed for the
behavior algorithms of the system. These are responsible
for the decisions of the vehicle, like safe driving through
an intersection (”Is this object a parked vehicle or waiting
for precedence?”). Driver assistance systems make use of
this information, too. Examples are systems for intersection
assistance or collision avoidance algorithms.

To get this information a detailed scene understanding
is necessary. Even if a classification algorithm classifies an
object as a vehicle, ambiguous cases exist such as if the
vehicle is parked or just about to start moving.

As a simplification which was sufficient for the scenarios
of the Urban Challenge, we propose an algorithm which
classifies all object hypothesis into:
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Fig. 2. Sensor Fusion Architecture [4], [5].

• The current movement state: Moving and Not Moving
• The past movement state: Observed Moving and Not

Observed Moving

The current movement state is set to moving once the object
tracking system decides that the object is not stopped. The
past movement state is set to observed moving, once the
object hypothesis has significantly changed its position. A
similar classification is used in current adaptive cruise control
implementations, which only react to objects, that have been
observed moving in the past.

IV. SYSTEM ARCHITECTURE FOROBJECT TRACKING

Fig. 2 shows the architecture of a sensor fusion system
that implements the two approaches described in the previous
sections (see also [5], [9]). It is divided into two layers, a
Sensor Layer and a Fusion Layer. For each sensor type (e.g.
RADAR, scanning LASER, etc.) a specialized sensor layer
is implemented. For each sensor an instance of its particular
sensor layer runs on the system. This way all sensor type
specific operations are encapsulated in specialized modules.
New sensor types can be added without changing existing
sensor modules and the implementation of the fusion layer.
This simplifies the extensibility of the system.

At the fusion layer all general functions for object tracking
are performed. These include state estimation, best model
selection, and movement classification (Fig. 3). State estima-
tion is done with a probabilistic estimator using a prediction
and an update step [5]. The algorithms for best model
selection and the movement classification will be described
in the following sections.

The current set of best object hypothesis is provided to
the applications and is also fed back to the sensor layer. To
be compatible with this decomposition the algorithms inside
the fusion layer must have the following properties:

• Be independent of sensor types.
• Be independent of the number of sensors used in the

tracking system.
• Be independent of the number of tracking models used

in the tracking system.

All information about how states are propagated is encap-
sulated in the fusion layer, the state propagation equations
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Fig. 3. Left: Possible Box Model interpretations of Edge Targets. Right:
Snapshots of a vehicle driving perpendicular to the robot through an
intersection. Edge Targets: Laser scanner features; Diamonds: Radar features
[5].

are hidden to the sensor layer. An application specific fil-
tering can be achieved this way [9], however this was not
implemented for the Urban Grand Challenge.

Each time a sensor has new raw data it requests a
prediction of the current best set of object hypothesis at
the current measurement time and associates the raw data
to these predicted object hypothesis [9]. For each extracted
feature a set of possible interpretations is created by using
a heuristic which takes the sensor specific characteristicsof
the raw data into account. Examples for these characteristics
are the resolution of the sensor, the noise level of distance
measurements, the maximum angle under which an object
is detectable or a special treatment of the boundaries of the
field of view.

Fig. 3 (right) shows edge targets which are extracted from
the raw data of the scanning lasers (a heuristic for the planar
lasers is described in [8]). Edge target features are ”L”
shaped features, which describe objects which either have
two edges with a near 90 angle or objects where only one
edge is visible. Fig. 3 (left) shows possible interpretations of
edge targets as a box model. As there is a great deal of uncer-
tainty in the edge target features all possible interpretations
are generated. If the data is not sufficient to be interpretedas
a box model (e.g. at larger distances or because the raw data
does not represent a vehicle) a point object interpretationis
used instead.

Based on a sensor specific heuristic a measure for the
compatibility of the generated interpretations with the asso-
ciated prediction is computed. Then it is checked if any of the
interpretations differs significantly from the current tracking
model used on the fusion layer.

If this is not the case then the best interpretation will be
used to generate an observation. An observation holds all
information necessary for the update step of the estimation
at the fusion layer. It encapsulates the measurement equations
and the information about the measurement noise. Analogous
to the state propagation encapsulated in the fusion layer, all
of the observation information is encapsulated in the sensor
layer. Thus the algorithm which updates the state estimate at
the fusion layer does not need to interpret the data from the
sensor layer. This makes the fusion layer independent of the
sensors modules implemented in the system.

If any of the interpretation differs significantly from the



prediction provided by the fusion layer the sensor initializes
a new object hypothesis for each differing interpretation.
Any of these new hypothesis can potentially replace the
current model hypothesis used on the fusion layer. A set
of hypothesis is called proposal. A proposal can be provided
in addition to an observation or - if there is no interpretation
compatible with the current best object hypothesis - without
an observation. In this case the associated data is only called
a detection to reflect the fact that the sensor detected the
object, but cannot provide any meaningful information for
the state estimation. For features which cannot be associated
to any object hypothesis a sensor module provides an unasso-
ciated proposal per extracted feature with an ordinal ordering
of the quality of the contained new object hypotheses.

In the fusion layer the best tracking model is selected
based on the proposals provided from the different sensors
and any other information available. The implementation
used during the Urban Challenge uses information about road
shape to bias the selection of the best proposal in on road
scenarios. In parking lots scenarios the best proposal accord-
ing to the ordinal ordering of the new object hypotheses is
selected.

Depending on the sensor capabilities a sensor specific
movement classification algorithm is implemented inside the
sensor layer. The result of the sensor internal classification
is a so called movement observation. This can be one out
of three possibilities:movement confirmation, no movement
confirmation, no information available.

A movement confirmationtells the fusion layer that the
sensor assumes that the associated object hypothesis is
currently moving based on the sensor internal judgement.
In our configuration the RADAR module could measure the
velocity via the Doppler shift. The movement of objects not
moving perpendicular to the RADAR measurement direction
can be detected reliably this way.

A no movement confirmationtells the fusion layer that
the associated object hypothesis is currently not moving. As
certain sensors can detect a movement only in a specific
directions (like the RADAR sensor described above) the
information is passed in form of a so calledno movement vec-
tor, which is a unit vector pointing in the direction in which
the sensor detected no movement. A special case is a null
vector which can be used if based in the sensor information
the object is not moving at all. This approach could be used
with vehicle to vehicle communication available for example,
however it was not used during the Urban Challenge.

Finally no information availabletells the fusion layer that
the sensor module cannot provide any information regarding
the current movement state for the associated object.

V. M ODEL SELECTION ALGORITHM

A heuristic is used inside the fusion layer to determine the
best model for tracking [5]. It is only based on the proposals
and observations from sensors which currently detect or
observe a given object.

A sensorsupportsa model if by using only observations
from this particular sensor the model is observable in princi-

ple. For instance, the planar and 3D LASER sensors support
both the box and the point model while the RADAR and
fixed beam LASER sensors can only support the point model.

A sensorproposesa particular model if it provides an
proposal with this model as an alternative to the model
currently in use by the fusion layer. The model may be
different in either the state vector (e.g. a different yaw angle
for a box model, for example); or it may be a different
model entirely (e.g. a point model instead of a box model).
A sensor will propose an entirely different model if it cannot
support the current model at all (e.g. a RADAR sensor will
always propose a point model, if the current model is a box
model) or if the sensor does not support the current model
based on the internally computed quality measure for the
interpretation (e.g. a LASER sensor can propose a point
model if the detected vehicle is at a distance where yaw
cannot be estimated anymore).

A model iscurrently supportedby a sensor if the sensor is
currently directly observing the object with the model (e.g.
LASER sensor observes a box model) or if the sensor is
currently proposing the model as an alternative (e.g LASER
sensor proposes a box model while the point model is the
current model). Before a proposal can be considered by the
fusion layer, the sensor must continually propose that model
for a pre-defined number of consecutive cycles. This helps to
mitigate rapid model switching in the case where the sensor
is receiving noisy returns.

Algorithm 1 Model selection algorithm
1: j = 0, modelPref[0...numberOfModels]= 0
2: for all possible modelsi = 1...numberOfModelsdo
3: relSupport[i] ← numCurrentlySupportingSenors/numSupportingSensors
4: if relSupport[i] >= minRelSupportthen
5: modelPref[i] ← modelPref[j] + 1
6: j = i

7: end if
8: end for
9: maxModelPref← max(modelPref[])
10: maxModelPrefIdx← max arg(modelPref[])
11: if 0 == maxModelPrefthen
12: do nothing (no decision is possible, keep the current best model)
13: exit the algorithm
14: else
15: bestModel← model[maxModelPrefIdx]
16: end if
17: if bestModel==currentModelthen
18: thresh← floor(numSupportingSensors∗thresholdReinit)
19: if numProposingSensors> thresh then
20: reinitialize model (model is OK but states need to be reinitialized)
21: else
22: do nothing (may be a false alarm)
23: end if
24: else
25: change model to bestModel
26: end if

In the current implementation the box model is the pre-
ferred model above the point model and the system will
attempt to use that model whenever possible due to the
additional information in conveys. Alg. 1 describes the
decision algorithm [5]. Lines 1-16 of the algorithm decide
which model type has the highest support by the sensors. By
varying the valueminRelSupportthe point at which models
are switched can be adjusted. A higher value ensures that a
switch to model with a higher accuracy will be performed



only if there are enough sensors supporting it. In the Tartan
Racing system the number of supporting sensors increases
as the tracked vehicle gets closer to the robot. For example,
at a range closer than 30m up to four sensors can support the
box model, which helps to suppress artifacts as shown in Fig
4, right. Lines 17-26 of the algorithm determine if the model
needs to be reinitialized. Here again a minimum number of
sensors is needed to support the request for a reinitialization.
The floor function ensures that not all sensors need to agree
to a reinitialization unlessthresholdReinitis set to 1.

VI. M OVEMENT CLASSIFICATION

A. Moving vs. Not Moving

The following heuristic inside the fusion layer combines
the movement observations from all sensors detecting an
object to determine the current movement state.

First how often an object has been confirmed moving
is determined by polling all sensors. If the total number
is above a thresholdthmoving then the object is called
potentially moving. As all sensors are counted the time that is
necessary to get to the resultpotentially movingis dependent
on the number of sensors currently detecting the object.
If only one sensor detects the objectthmoving consecutive
confirmations are needed.

If the object is not classified aspotentially movingbased
on the movement confirmations a statistical test on the
velocity estimation is performed. It is checked if the hy-
pothesisH0: ”Absolute velocity is smaller thanvmin.” can
be rejected. If this is the case, then the object is classified
aspotentially moving.

The statistical test can always be performed as it is based
on the state variables only. This is the case for situations
where none of the sensors has the capability to perform a
sensor based movement confirmation as described above. In
our system this was true for the LASER sensors as no sensor
specific algorithm was implemented. There may however be
ways, to exploit information included in the raw data to
detect a movement.

To get robust results the significance levelα of the test
and vmin can be tuned. With a highervmin and a lower
α the test becomes more conservative. Loweringα leads
to longer times until enough data is available to rejectH0,
increasingvmin leads to less false positives at low speeds,
however slow objects are not classified correctly. Hardware
wise the test can influenced by increasing the number of
sensors detecting an object or with a higher accuracy of a
single sensor.

If an object is classified aspotentially movinga cross
check against the no movement vectors provided by the
sensors is performed. For this the dot product between the
normalized current velocity estimate and the no movement
vector is build and checked against a threshold. If the result
from any of the dot products reveals that the object is not
moving then the object is classified as not moving, otherwise
it is classified as moving.

If the cross check can be performed depends on the sensors
detecting the object. In our system the cross check could only

Autonomous Vehicle

at T-Intersection

Tracked Vehicle

on Road

(Point Model)

Tracked Vehicle

(Box Model)

Fig. 4. The model is switched from point to box once the vehicle is
detected with the scanning LASER sensors [5].

be performed when at least one RADAR sensor detected the
object. In all other cases only the result of the statisticaltest
can be used to determine the movement state.

B. Observed Moving vs. Not Observed Moving

To determine if an object should be classified asobserved
moving the following heuristic works robustly. First the
distance traveled is estimated from the last time the object
has been classified asnot observed movingis evaluated. If
this distance is above a threshold it is checked if the objectis
classified asmovingbased on the movement observations. If
this is true, then the object is classified asobserved moving.
If it is not true then the object has to be classified asmoving
for a time periodtobm

min,1 to be classified asobserved moving.
The mandatory check against the distance traveled in-

creased the robustness against short term artifacts, especially
during the initialization phase of the filters. It is possible
to not perform this check for objects which are confirmed
moving by the sensors alone, however this did not increase
the performance significantly, so that the more conservative
approach makes sense.

Because of artifacts and noise every approach will lead
to wrong classifications in certain cases. This implies that
there has to be a way to revise the current decision regarding
the observed movingclassification. The following heuristic
takes short term artifact into account. Theobserved moving
decision is only kept if the object is classified as moving for
a time periodtobm

min,2 > tobm
min,1. Once this time period is over

the observed moving flag is kept fortobm
max > tobm

min,2. As a
result a wrongobserved movingclassification is kept for a
maximum oftobm

max.

VII. RESULTS

Fig. 4 shows a vehicle driving up to an intersection
with the autonomous vehicle waiting for precedence. At a
distance of more than 150m only the pointed RADAR sensor
detects the approaching vehicle—the point model is used
for tracking. The adaptation of the noise with respect to the
velocity vector stabilizes velocity estimation in the direction
of travel. As soon as the vehicle is close enough for the
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Fig. 5. (a) Edge Targets. The targets left and right to the road originate
from bushes. (b) Object hypotheses. (c) Only object hypotheses with the
observed moving flag are shown.

LASER sensors to generate box model proposals the tracking
model is changed. The RADAR sensors still provide accurate
velocity measurements which allow a precise estimation
of the time gap for merging—the position measurements
however are represented only with a very low weight in the
observation. Due to the information provided by the LASER
sensors the yaw angle of the object can now be estimated.

In open parking lots the sensor configuration can generate
a box model with sufficient accuracy to predict the movement
of a tracked vehicle for up to three seconds based on
estimated states only. This makes the robot able to drive
in an open parking lot together with other vehicles—human
or robot driven.

The distinction of static and moving obstacles was a
key concept of the perception system of Tartan Racing’s
autonomous vehicle for the Urban Challenge 2007 [4]. Fig.
5 (a) shows features extracted form LASER scanner data on
a road which has dense bushes and a fence next to the road
boundaries. Fig. 5 (b) shows the according object hypothesis
and Fig. 5 (c) only object hypothesis which are classified as
observed moving. Only the vehicle driving down the road is
classified asobserved moving.

In environments encountered during the Urban Challenge
the approach allowed smooth autonomous driving. The con-
figuration used on the robot however was a compromise
between the delay to classify an object hypothesis as moving,
the minimum classification velocity and the suppression of
false alarms. In areas like shown in Fig. 5 (a) not all false
alarms for moving obstacles could be suppressed. Additional
information about the location of obstacles relative to the
road was used to bias the decision and reduce the number
of false alarms to nearly zero.

VIII. CONCLUSIONS AND FUTURE WORK

In a data fusion system with heterogeneous sensors the
sensors contribute different levels of information. To make

the system extensible and flexible for changes an architecture
and algorithms have to be found which allow an abstraction
of the sensors.

In this paper we proposed an architecture which en-
capsulates all sensor specific algorithms in a sensor layer
and sensor independent algorithms in a fusion layer. The
architecture allowed an efficient development of our obstacle
tracking system for the Urban Challenge.

For object tracking we proposed an adaptive model switch-
ing approach, where the tracking model is selected based on
the available sensor information. The selection is based on
votes from sensors detecting the object and is independent
of the underlying sensors and tracking models. The practical
realization showed that the approach works robustly for a
combination of RADAR and LASER sensors (fixed beam
and scanning).

For classifying the movement state of detected dynamic
obstacles an sensor independent algorithm has been pre-
sented, which combines sensor specific movement observa-
tions and a sensor independent hypothesis test into a robust
classification of the movement state. We showed results of
the algorithm which allow smooth autonomous driving of
our robot.

The feature extraction algorithms used for the LASER
sensors searched for ”L” shapes only. In areas with bushes
artifacts caused by this approach can lead to false pos-
itives regarding the movement classification. Future work
will include the development of more sophisticated feature
extraction algorithms which are able to reject this data in an
early stage. The additional use of information about the road
already showed very good results.
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