PROGRAMMING AND CONTROLLING THE
OPERATIONS OF A TEAM OF MINIATURE
ROBOTS *

Paul E. Rybski, Sascha A. Stoeter,

Maria Gini, Nikolaos Papanikolopoulos

Center for Distributed Robotics, Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN 55455
{rybski,stoeter,gini,npapas}@cs.umn.edu

Abstract We describe a software architecture used to control the operations of a
group of miniature mobile robots called Scouts. Due to their small size,
the Scouts rely on a proxy processing scheme where they receive com-
mands and transmit sensor information over RF channels to a control-
ling workstation. Because the bandwidth of these channels is limited, a
scheduling system has been developed that allows the robots to share
the bandwidth. Experimental results are described.

Keywords: Miniature robots, distributed sensing, resource sharing

1. Introduction

Tasks with multiple robots require a software framework in which be-
haviors can be easily integrated, and in which access to resources can
be scheduled and managed by the controlling software without much
user intervention. We have developed a distributed software system for
controlling a group of small, mobile robots which have extremely lim-
ited on-board computing capabilities. These robots, called Scouts, are
completely reliant upon a proxy processing scheme for all their comput-
ing needs, including the digitizing and processing of the video data they
broadcast over a fixed-frequency analog radio link.

The communication channels the Scouts use to send and receive in-
formation are very limited in power and throughput. As a result, access

*Material based upon work supported by the Defense Advanced Research Projects Agency,
Microsystems Technology Office (Distributed Robotics), ARPA Order No. G155, Program
Code No. 8H20, issued by DARPA /CMD under Contract #MDA972-98-C-0008.

2

to these channels must be explicitly scheduled so that the demand for
them can be met while maintaining the integrity of the system’s oper-
ation. The Scout control architecture has been developed to take these
factors into account.

We present experimental results on a distributed surveillance task in
which multiple Scouts automatically position themselves in an area and
watch for motion. We discuss how the limited communication bandwidth
affects robot performance.

2. Scout Robots

Scouts are miniature (11.5cm in length and 4 cm in diameter) robotic
systems designed for surveillance and reconnaissance tasks (Rybski et al.,
2000). They have a video camera which they use to transmit images to a
remote source. They communicate over a packetized RF communications
link using an ad-hoc networking protocol. Due to the Scout’s limited
volume and power constraints, the two on-board computers are only
powerful enough to handle communications and actuator controls. All
decisions and sensor interpretations are done on an off-board workstation
or by a human teleoperator. Figure 1 shows a group of the robots.

Figure 1. The fleet of Scout robots.

Video data is broadcast over a fixed-frequency analog radio link and
must be captured by a video receiver and fed into a framegrabber for
digitizing. Because the video is a continuous analog stream, only one
robot can broadcast on a given frequency at a time. Signals from mul-

Programming and Controlling the Operations 3

tiple robots transmitting on the same frequency disrupt each other and
become useless.

The RF limitations of the Scout pose a couple of fundamental difficul-
ties when trying to control several of them. First, the command radio
has a fixed bandwidth. This limits the number of commands it can
transmit per second, and therefore limits the number of Scouts that can
be controlled simultaneously. Currently, we operate on a single carrier
frequency, with a command throughput of 20-30 packets/second, which
is sufficient to control 4 to 5 Scouts.

The most important problem is that there are not enough frequencies
available in commercial off the shelf video transmitters to allow for a
large number of simultaneous analog transmissions. With the current
Scout hardware we have only two video frequencies. As a result, video
from more than two robots requires interleaving the time each robot’s
transmitter is on. Thus, an automated scheduling system is required.

3. Dynamic Resource Allocation

We have designed a distributed software architecture (Stoeter et al.,
2000), which dynamically coordinates hardware resources across a net-
work of computers and shares them between client processes.

Access to physical hardware is controlled through components (soft-
ware processes) called Resource Controllers (or RCs). If a decision process
needs to use a resource, it must be granted access to its RC. Resources
that can only be managed by having simultaneous access to groups of
RCs are handled by a second layer components called Aggregate Resource
Controllers (or ARC).

In order for a process to control a Scout, several physical resources are
required. First, a robot not currently in use by another process must
be selected. Next, a command radio with the capacity to handle the
demands of the process is needed. If the Scout is to transmit video,
exclusive access to a fixed video frequency is required, together with a
framegrabber connected to a tuned video receiver.

Each instance of these four resources is managed by its own RC. In
Figure 2 solid lines indicate which RCs the ARCs currently have access
to. Dashed lines indicate RCs which are exclusive access only and can
only support control from a single ARC. The Radio RC is an exception
to this, as it is a sharable RC. Since ARC-2 has access to all of its RCs,
it can run. ARC-1 cannot run because it is waiting on two RCs.

Access to RCs must be scheduled when there are not enough RCs to
satisfy the requirements of the ARCs. A centralized process called the
RESOURCE CONTROLLER MANAGER maintains a master schedule of all

RC Video

Frequency
ARC-1 N

RC Scout 1} [RC Scout 2

Figure 2. An example of how a decision process controls RCs by connecting to a

single ARC.

active ARCs and grants access to each of their RCs when it is their turn
to run. When requesting access to a set of RCs, an ARC must specify a
minimum amount of time that it must run to get any useful work done.

The RESOURCE CONTROLLER MANAGER’s scheduling algorithm tries
to grant simultaneous access to as many ARCs as possible. The ARCs
that have some RCs in common are examined to determine which ARCs
can operate in parallel and which are mutually exclusive. ARCs which
request a non-sharable RC cannot run at the same time and must break
their total operating time into slices. ARCs which have a sharable RC in
common may be able to run simultaneously, assuming that the capacity
requests for that sharable RC do not exceed its total capacity. Once
the ARC schedule has been constructed, the RESOURCE CONTROLLER
MANAGER executes it and takes care of notifying the RCs which ARC
they should talk to at any given point in the schedule.

4. Experimental Results

In the experiments the Scouts are used in a distributed surveillance
task where they are deployed into an area and watch for motion. This
is useful in situations where it is impractical to place fixed cameras
because of difficulties relating to power, portability, or even the safety
of the operator.

Several simple behaviors have been implemented to do the task. All
the behaviors use the video camera, which currently is the only envi-
ronmental sensor available to the Scout. These behaviors include Locate
Goal which rotates the Scout in place while searching the area around
it for a target area of interest, Drive Toward Goal which visually servos
the robot to an area of interest, Handle Collisions which helps disengage

Programming and Controlling the Operations 5

the Scout from an obstacle, and Detect Motion in which the Scout robot
reports whether something in its field of view is moving.

To test the ability of the Scouts to operate in a real-world environ-
ment, a test course was set up in our lab using chairs, lab benches,
cabinets, boxes, and miscellaneous other materials. The goal of each
Scout was to find a suitable dark hiding place, move there, turn around
to face a lighted area of the room, and watch for motion.

Figure 3. A top-down view of the room where the experiments were conducted.
White areas are open space, gray areas are hiding spaces, and black areas are obstacles.
The square outline in the center shows where the Scouts were started, the dotted line
indicates the path of the moving target, and the dots are the hiding positions of the
Scouts.

The environment, shown in Fig. 3, is 6.1 by 4.2 m and has a number of
secluded areas in which the Scouts could hide. The Scouts were started
at the center of the room and were pointed at one of 8 possible orien-
tations. Both the position and orientation were chosen from a uniform
random distribution.

The moving target the Scouts had to detect was a commercial mobile
robot, chosen for its ability to repeatedly travel over a path at a constant
speed. The target moved at a speed of approximately 570 mm/s and
traversed the the room in 8.5 seconds on average. Once it had moved 16
feet into the room, it turned around and moved back out again. With a
4 second average turn time, the average time the target was in the room
was 21 seconds.

When Scouts shared a single video frequency, only one Scout at a time
could access the video frequency. Access was allocated and scheduled
by the RESOURCE CONTROLLER MANAGER. The amount of time each
behavior could use the video frequency was set to 10 seconds, 3 seconds

6

of which were needed every time for the video-transmitter to warm up,
so leaving 7 seconds for useful work.

Four different cases were tested: (1) a single Scout using a single
video frequency, (2) two Scouts sharing a single video frequency, (3) two
Scouts using two different video frequencies, (4) four Scouts sharing two
different video frequencies. We run a total of 200 trials, with different
hiding positions and number of scouts.

To evaluate the motion detection abilities of the Scouts and to deter-
mine the effect of sharing the video frequency, the actual time the target
was seen (shown in Fig. 5) was compared to the potential time that the
target could have been seen given the Scout positions (shown in Fig. 4).
This potential time was calculated by analytically computing how long
the target would be within the field of view of the Scout, independently
on the state of activity of the Scout.

©

» »

3 i

L L
o~ ©

IS

e
5

Time in Seconds
Time in Seconds

©

[N—

L L L
3 4 1

" case
Figure 4. The potential time (in sec- Figure 5. The actual time (in sec-
onds) the Scouts could have been seen onds) the Scouts detected motion. (1)
the moving robot. (1) one Scout, (2) one Scout, (2) two Scouts on a single
two Scouts on a single frequency, (3) frequency, (3) two Scouts on two dif-
two Scouts on two different frequen- ferent frequencies and (4) four Scouts
cies and (4) four Scouts on two differ- on two different frequencies. The plots
ent frequencies. Plots show means and show means and standard deviations.

standard deviations.

One Scout on a single frequency had a much higher success rate than
two Scouts on a single frequency. This was expected because when the
Scouts had to take turns with the video frequency, they could easily miss
the target. The shorter the time the target was in the field of view, the
smaller was the opportunity for the Scout to detect it, even when there
was no swapping because a single frequency was used. Using a larger

Programming and Controlling the Operations 7

number of Scouts increased the viewable area traversed by the target
and the time that the target was in view, and decreased the variances.

The area viewed by four Scouts was significantly greater than the
areas viewed in the other cases, but not by a factor of four over that
viewed by one Scout nor by a factor of two over that viewed by two
Scouts. The environment was such that there was usually a great deal
of overlap in the areas viewed by individual Scouts. Redundancy was
probably not as useful in this environment, but would probably be more
effective in larger or more segmented environments. More details on the
experiments are in (Rybski et al., 2001).

5. Related Work

Due to the small size, most miniature robots use proxy processing, as
in Inaba et al. (Inaba et al., 1996), and communicate via a wireless link
with the unit where the computation is done. This becomes a problem
when the bandwidth is limited, as in the case of our Scouts. Because of
their limited size, not only all processing is done off-board but also the
communication is limited to a few communications channels.

A number of software architectures have been proposed for multiple
robots, many of them described in (Kortenkamp et al., 1998). Our ar-
chitecture has some similarities with ALLIANCE (Parker, 1998) and
CAMPOUT (Pirjanian et al., 2000). The major difference is that we
focus on resource allocation and dynamic scheduling, while other archi-
tectures are designed for more complex behavior fusion.

Resource allocation and dynamic scheduling are essential to ensure
robust execution. Our work focuses on dynamic allocation of resources
at execution time, as opposed to analyzing resource requests off-line, as
in (Atkins et al., 2001; Durfee, 1999), and modifying the plans when
requests cannot be satisfied. Our approach is specially suited to unpre-
dictable environments, where resources have to be allocated in a dynamic
way that cannot be predicted in advance. We rely on the wide body of al-
gorithms that exists in the area of real-time scheduling (Stankovic et al.,
1998) and load balancing (Cybenko, 1989).

6. Summary and Future Work

An essential feature of the distributed software control architecture
we presented is the ability to dynamically schedule access to physical
resources, such as communication channels and framegrabbers, that have
to be shared by multiple robots.

We have also presented system issues related to the control of multi-
ple robots over a low bandwidth communications channel. Experimental

8

results illustrating the ability of the Scout to position itself in a location
ideal for detecting motion and the ability to detect motion have been
shown. Future work is planned to allow the Scouts to make use of addi-
tional sensor interpretation algorithms for more complex environmental
navigation. Ultimately, we hope to have the Scouts construct a rudi-
mentary topological map of their surroundings, allowing other robots or
humans to benefit from their explorations.

We believe that a combination of intelligent scheduling and more flex-
ible hardware will allow a larger number of Scout robots to operate si-
multaneously in an effective manner.

References

Atkins, E. M., Abdelzaher, T. F., Shin, K. G., and Durfee, E. H. (2001). Planning and
resource allocation for hard real-time, fault-tolerant plan execution. Autonomous
Agents and Multi- Agent Systems, 4(1/2):57-78.

Cybenko, G. (1989). Dynamic load balancing for distributed memory multiprocessors.
Journal of Parallel Distributed Computing, 7(2):279-301.

Durfee, E. H. (1999). Distributed continual planning for unmanned ground vehicle
teams. Al Magazine, 20(4):55-61.

Inaba, M., Kagami, S., Kanechiro, F., Takeda, K., Tetsushi, O., and Inoue, H. (1996).
Vision-based adaptive and interactive behaviors in mechanical animals using the
remote-brained approach. Robotics and Autonomous Systems, 17:35-52.

Kortenkamp, D., Bonasso, R. P., and Murphy, R. (1998). Artificial Intelligence and
Mobile Robots. AAAI Press/MIT Press.

Parker, L. E. (1998). ALLTIANCE: An architecture for fault tolerant multi-robot co-
operation. IEEE Trans. on Robotics and Automation, 14(2):220-240.

Pirjanian, P., Huntsberger, T., Trebi-Ollennu, A., Aghazarian, H., Das, H., Joshi,
S., and Schenker, P. (2000). CAMPOUT: a control architecture for multirobot
planetary outposts. In Proc. SPIE Conf. Sensor Fusion and Decentralized Control
in Robotic Systems III.

Rybski, P. E., Papanikolopoulos, N., Stoeter, S. A., Krantz, D. G., Yesin, K. B.,
Gini, M., Voyles, R., Hougen, D. F.; Nelson, B., and Erickson, M. D. (2000).
Enlisting rangers and scouts for reconnaissance and surveillance. IEEE Robotics
and Automation Magazine, 7(4):14-24.

Rybski, P. E., Stoeter, S. A., Gini, M., Hougen, D. F., and Papanikolopoulos, N.
(2001). Performance of a distributed robotic system using shared communications
channels. Technical Report 01-031, Computer Science and Engineering Depart-
ment, University of Minnesota.

Stankovic, J., Spuri, M., Ramamritham, K., and Buttazzo, G. (1998). Deadline Schedul-
ing For Real-Time Systems: EDF and Related Algorithms. Kluwer Academic Pub-
lishers, Boston.

Stoeter, S. A., Rybski, P. E., Erickson, M. D., Gini, M., Hougen, D. F., Krantz, D. G.,
Papanikolopoulos, N., and Wyman, M. (2000). A robot team for exploration and
surveillance: Design and architecture. In Proc. of the Int’l Conf. on Intelligent
Autonomous Systems, pages 767-774, Venice, Ttaly.

