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Abstract

In this paper we study the performance of multiple
robots at a search and retrieval task. The robots have
all the same capabilities and perform the same task
without any explicit communication. The sensing ca-
pabilities of the robots are quite limited, yet the robots
succeed at performing the task. We show how the per-
formance is affected by the number of robots working
in the same area, the distribution of the targets the
robots are searching for, and the complexity of the en-
vironment.

Introduction

Cooperative multiple robots can often accomplish a
task that is difficult, if not impossible, for a single
robot. When approaching a problem involving coordi-
nated behavior, the challenge arises out of determining
the strategy that will maximize performance. Strategy
considerations include: explicit versus implicit coordi-
nated behavior, origin of control (central or decentral-
ized), extent of communication, heterogeneous versus
homogeneous abilities, and individual motivation (self-
ish or socialized). Despite the growing interest in multi-
ple robots, only a handful of experimental studies exist
which assess performance relative to cooperative and
coordinative strategies.

For performance evaluation relative to strategy, the
research questions we address in this paper are:

¯ How does the complexity of the environment affect
performance? For instance, does the presence of
extraneous obstacles suggest a different cooperation
strategy?

¯ How does the number of robots operating in the same
area affect performance? For instance, how does an
increase in population increase the chances of un-
wanted interference. Mataric (Mataric 1995b) shows
how the performance of a group of multiple robots
performing a clean-up and collection task declines as
the number of robots increases.
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¯ How does the distribution of the targets in the envi-
ronment affect performance? For instance, do simple
reactive behaviors work best with random distribu-
tion of targets?

The tasks traditionally studied with multiple robots
and behavior-based control include foraging which in-
volves searching and retrieving items from a given
area, box-pushing which involves moving an object
between two locations, formation marching (Balch 
Arkin 1995) which involves moving while maintaining 
fixed pattern, and various forms of military surveillance
(Parker 1996). Another classic task involves janitorial
services (Parker 1996) where robots clean a room of 
unfamiliar building by emptying the garbage, dusting
the furniture, and cleaning the floor.

Here, we propose a task of search and retrieval
whereby robots locate, collect, and return targets to
a home base. Robots are homogeneous and perform
independently with a localized goal of target retrieval
without the aid of communication. (Robots and targets
are shown in Figure 1.) The task is a simplified version
of mine-field clearing where mines are localized using
close-proximity sensors such as magnetometers, or of
a find-and-rescue task where robots find and retrieve
specific targets such as those dropped by air.

Due to the limited sensing capabilities of the robots
used in these experiments, completion of the task is
especially challenging. Despite these limitations, the
robots are capable of successfully retrieving the targets,
as we will show later in the paper.

Related Work
Most research with multiple robots has focused on col-
laborative work, and has taken various forms and ap-
proaches as detailed in the extensive survey by (Cao,
Fukunaga, & Kahng 1997). The recent special issue of
Autonomous Robots devoted to Robot Colonies and the
book edited by Arldn and Bekey (1997) attests to the
vitality of the field.

Most research in the achievement of a common goal
using robot collaboration can be categorized into three
broad groups:
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Figure 1: A picture of two robots and two targets

1. Problems where cooperation is essential to achieve
the task, such as cooperating to push a large,
heavy object. Although each robot is capable
of performing a useful task, the overall task ac-
complished by the group could not be achieved
by a single robot. This kind of intentional co-
opcration has been demonstrated both without
explicit communication (see, for instance (Sen,
Sekaran, & Hale 1994)) and with communication
(Rus, Donald, & Jennings 1995; Matarie 1997;
Sasaki et al. 1995). Other problems where co-
operation is essential are those faced by teams
where each member plays a different role, as, for
instance, players on a soccer team (Stone & Veloso
1997). Tambe (1997) has proposed methods 
agent teams working in synthetic domains where
individual team members have their own reactive
plans, but are also given team plans that explicitly
express the team’s joint activities.

2. Problems where cooperation increases performance
either by decreasing the time to complete the
task, or by increasing the reliability. Sample
tasks include cleaning up trash or mapping a large
area. This type of cooperation depends most
often on communication for information sharing
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(MacKenzie, Arkin, & Cameron 1997; Mataric
1997; Parker 1996; Schneider Fontan & Mataric
1996), but has also been demonstrated without ex-
plicit communication (Arkin 1992; Beckers, Hol-
land, & Deneubourg 1994). However, even simple
communication has been shown to increase sub-
stantially the performance of robots when forag-
ing, consuming, and grazing (Balch & Arkin 1994).
Alami (1995) has shown coordination of naviga-
tion of multiple robots through a plan-merging
paradigm for the task of transporting containers
in harbors.

Problems where cooperation emerges as a result of
interactions. A significant body of research in co-
operative mobile robotics deals with the study of
large numbers of homogeneous robots (swarms).
When many simple robots are brought together,
globaily interesting behaviors can emerge as a re-
sult of the local interactions of the robots. A key
research issue is determining the proper design of
the local control laws that will allow the collection
of robots to produce the desired behaviors. For
instance, Mataric (1995a) describes group behav-
iors such as dispersion, aggregation, and flocking.
Agah and Bekey (1995) studied the effect of coin-
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munication of simulated robot colonies in fetching
and carrying tasks. Behaviors of colonies of insect
species are called "eusocial" (McFarland 1994), 
contrast them with "cooperative" behaviors shown
by higher animals where cooperation is the result
of interactions of selfish agents aimed at maximiz-
ing individual utility.

Many approaches have been proposed for design-
ing mechanisms for agent interactions. Most mech-
anisms require explicit coordination and negotiation,
but direct communication is often replaced by indi-
rect communication via sensing or via the environment
as, for instance, in (Arkin 1992; Beckers, Holland, 
Deneubourg 1994).

Conventions are a straightforward way of achieving
coordination in a multi-robot system. In general, de-
signing all necessary conventions is difficult and perhaps
intractable (Shoham & Tennenholtz 1995), but it has
been shown that conventions can be reached without
centralized control if agents interact and learn (Shoham
& Tennenholtz 1992). Shoham proposes a set of social
laws for a group of idealized mobile robots that allow
them to move on a grid without colliding and interfer-
ing. The social laws are basically traffic laws that con-
trol how the robots move, what they should do when
they get to junctions, etc. The assumption is that the
robots are homogeneous and law abiding. Wang (Wang
1995), for instance, proposes several functional primi-
tives for traffic control in distributed robotic systems.

Experimental Description
Many factors determine the effectiveness of a cooper-
ative multi-robotic solution to a search and retrieval
problem. Three such factors include the number of
robots used, the physical distribution of the targets,
and the obstacle density in the environment. The pur-
pose of this paper is to study how the overall success
of a robotic team is affected by altering these environ-
mental factors.

The task set before the robots was that of simple
search and retrieval. The robots start from a fixed lo-
cation in the environment, search the area for targets
and return them to the home base.

Experiments were run on different numbers of robots,
ranging from one to four. Each experiment on a collec-
tion of robots was run four times and the results were
averaged. The distribution of targets in the arena var-
ied from a uniform spread to tightly clustered groups.
Finally, some experiments added obstacles to the envi-
ronment to impede the robots’ paths. These obstacles
occupied roughly 25% of the arena’s area.

Two different environments were constructed for use
in the experiments. The first was a circle four meters in
diameter (Figure 2) and the second was an oblong area
roughly seven meters long and six meters wide (Figure
3). For both sets of experiments we used a single land-
mark, a 100W incandescent light bulb. The robots used
the landmark to search the arena and home in on the

drop-off zone.

Drop Off

Are~Wall

Incandescent
Light

Obstacles

I
4m

Figure 2: The small arena used for the experiments

For each of the experiments, robots were only allowed
to gather targets for 10 minutes. The times at which
the robots delivered a target to the landmark light bulb
were recorded.

The targets can be detected at a range of about two
to three feet with a 60 degree angle of sensitivity, so
the robots must actively roam around the arena in or-
der to locate them. The robots are currently not ex-
plicitly aware of each other’s presence. If two collide,
they simply treat each other like obstacles and position
themselves along an unimpeded path.

The robots are programmed to only react to their
immediate environment, thus they retain no internal
map and use no previous knowledge about their envi-
ronment. The robots started out at the drop-off zone
and moved away from it, using it for very rudimentary
tracking and homing.

Robotic Hardware
The robots are constructed out of LEGO Technic
blocks. LEGOs were used because they are lightweight,
strong, easy to work with, and are ideal for rapid pro-
totyping and proof-of-concept designs. The University
of Minnesota AIRVL has successfully been making use
of LEGOs as a robot fabrication material for several
years.

The chassis is a dual-treaded design, giving it holo-
nomic mobility. To grasp a target, each robot is
equipped with a single degree of freedom forklift-style
gripper, capable of lifting a target off the ground to
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Figure 3: The large arena used for the experiments

transport it. A single infrared break-beam sensor is
mounted between the tines of the gripper to let the
robot know that it has a target in its grasp. Tile grip-
per is small enough so that only a target will trigger its
grasp. Some details of the robot hardware are shown
in Figure 4.
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Figure 4: The robot design

For obstacle avoidance, a set of feelers/bumpers art.,
located just beyond the front of the robots’ treads.
These bumpers register collisions from the front-left and
front-right as well as from each side. They also serve
as a funnel to guide targets into the gripper. A rear
bumper allows the robot to detect collisions from be-
hind.

The targets that the robots attempt to locate are
also constructed out of LEGOs and transmit a contin-
uous stream of 40 KHz infrared light. In order to de-
tect the targets, the robots are outfitted with five pho-
todetectors sensitive to this frequency and wavelength.
Three of these detectors were fitted with lenses az~d are
mounted on the front of the robot. The lenses decreased
tile angle of sensitivity and thus made the sensors very
dircctional. This allows the robot to orient itself prop-
erly when attempting to grab a target.. The remaining
two sensors are mounted to detect targets on the sides
of the robot.

In order to track the visibl~light landmarks, a turret-
mounted set of cadmium-sulfide (CdS) photosensitivc
resistors was used. Tile turret was located high enough
to see over any obstacles and was thin enough not to
obscure another robot’s line of sight to a landmark.

The on-board computer was Fred Martin’s Handy-
board, a MC68HCll-based microcontrollcr with 32K
of RAM (Martin 1998). The AIRVL uses this partic-
ular microcontroller almost exclusively in concert with
its LEG() robots because of its expansive software li-
braries and ease of device interface capabilities. Devel-
opment of the software for the Handyboard was done
using Interactive-C (Wright, Sargent, & Witty 1996), 
specialized subset of C which features libraries special-
ized for the Handyboard’s hardware and more exotic
facilities like explicit multi-tasking capabilities.

Robot software
Control of the robot is achieved through a finite-state
machine (FSM) sequencer. In order to best solve the
search and retrieval task, it was broken down into logi-
cal units where each unit was assigned to a single state
of the FSM to solve it. Eac~h state consists of a set of
behaviors running in parallel, similar to a subsumption-
style (Brooks 1986) method of programming. Each
state’s behavior is responsible for handling one segment
of the robot’s control code, mapping a sensor set to an
actuator command. In order to resolve conflicts, each
behavior is given a unique priority. When a behavior is
activated by the triggering of a sensor, (such as when
the collision detection behavior notices that a bumper
has been depressed), it begins transmitting commands
to the actuator control processes. Behaviors with higher
priorities take precedence over behaviors with lower pri-
orities. This ensures that certain actions which are
more critical to the survival of the robot will be accom-
plished before others. However, some caxc is needed
to insure that unintentional and unnecessary robot ac-
tions do not emerge from the complex interaction of
these groups of behaviors.

As seen in Figure 5, State 0 is responsible for search-
ing the arena for a target. This state consists of the
following behaviors: Grab Target, Obstacle Avoidance,
Seek Targets, and Search Arena. Grab Target is re-
sponsible for stopping the robot once a target enters its
gripper. Obstacle Avoidance moves the robot out of the
way when it collides with an obstacle or aalother robot.
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Figure 5: The finite state machine program

Seek Targets uses the front infrared detectors to line
the robot up with a target for grasping. Search Arena
uses the landmark as a reference for randomly navigat-
ing about the arena as well as rotating the robot to face
a target when detected.

State 1 is responsible for taking the robot back to the
landmark when it captures a target. This state con-
sists of the following behaviors: Drop Target, Obstacle
Avoidance and Go Home. Drop Target is responsible
for dropping a target off when it gets to the appropriate
zone. Obstacle Avoidance is used in the same fashion
as in state zero. Finally, Go Home uses the landmark
to point the robot in the direction of the drop-off zone.

Experimental Data
Several sets of experiments were run to analyze the ef-
fects of various environmental factors on the robot’s
performance. The first experiment analyzed how vary-
ing the number of robots affected the rate at which tar-
gets were gathered. This experiment took place in the
smaller arena containing seven uniformly distributed
targets and no obstacles. The average number of tar-
gets retrieved at the end of each minute was examined.
These results are shown in Figure 6.
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Figure 6: Performance in small arena, seven targets, no
obstacles, one to four robots

The second experiment differed from the first only by

the addition of obstacles in the arena. Again, perfor-
mance was analyzed relative to the number of robots
performing the task. These results are shown in Fig-
ure 7.
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Figure 7: Performance in small arena, seven targets,
obstacles, one to four robots

The final set of experiments analyzed how the robots
performed in the larger arena. In these sets of experi-
ments, the targets were placed in a uniform distribution
and there were no obstacles. There were eleven targets
used in this arena instead of seven to help decrease the
sparseness between targets. These results are shown in
Figure 8.
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Figure 8: Performance in large arena, eleven targets,
no obstacles, one to four robots

Finally, two experiments were run in which the tar-
gets were placed in small clusters instead of in a uni-
form distribution. The first experiment took place in
the small arena with obstacles while the second exper-
iment took place in the large arena with no obstacles.
These experiments were only run with four robots.
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In the first of these two experiment, the robots ac-
tuaUy did better than in the uniform distribution. In
the second, the robots did much worse than with the
uniform distribution. See Figures 9 and 10.
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Figure 9: Performance of uniform vs. non-uniform dis-
tribution, seven targets, small arena, obstacles, four
robots
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Figure 10: Performance of uniform vs. non-uniform
distribution, eleven targets, large arena, no obstacles,
four robots

Conclusions and Future Work

We have analyzed how the robot performance at a
search and retrieval task is affected by environmental
factors and by the number of robots.

The first thing to notice is how the number of robots
affects the overall performance of the system. Increas-
ing the number of robots definitely increased the total
number of targets retrieved and the rate of retrieval.
However, robot collisions and interference tended to
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slow the collection of targets down greatly. When two
or more robots decided to try to grab the same target,
they would usually spend a fair amount of time collid-
ing with each other and keeping the target out of each
other’s grippers. Adding more robots didn’t produce a
linear or superlinear increase in performance. Contin-
ually increasing the number of robots produces only a
diminishing increase in performance.

There are several differences between the seven target
experiments with and without obstacles. First of all in
the experiments with obstacles involving three and four
robots, the robots took a little bit longer to retrieve the
targets but eventually ended up doing just about as well
as the experiment without obstacles. However, for the
experiments that involved only one or two robots, the
rate of collection and overall success rate went up.

The speedup for the experiments with the small num-
ber of robots can be attributed to the fact that so much
of the arena was made inaccessible because of the ob-
stacles. These obstacles decreased the overall area of
the arena thus robots only had to search a very small
amount of it before encountering a target. The same
thing can be said for the experiments with the larger
number of robots, but more interference caused the
overall speed of collection to decline somewhat.

In the experiments that compared the uniform with
the non-uniform distribution of targets in the large
arena, the robots suffered a severe performance hit
when all of the targets were placed in a single clump.
There was a very interesting interaction between the
robots and their environment with respect to the con-
trol code. Apparently, the positioning of the arena
walls, the drop-off zone light bulb and the interactions
of the robots’ internal processes caused the robots to
favor some sides of the arena more than others. This
non-uniformity of the search pattern caused the robots
to miss the majority of the targets.

This strange interaction of process timings, variables,
and the environment is something that was not entirely
unexpected but is something that may be impossible
to completely weed out. Reactive programs of this na-
ture quite often have unwanted side effects that are ex-
tremely difficult to remove without accidentally intro-
ducing others. It may be that such a complex system
is nearly impossible to model properly because of its
close coupling with the environment that it must inter-
act with.

In our future work, we will study the effectiveness
of providing additional and more detailed information
to the robots. One consideration is whether perfor-
mance would increase if the robots could record previ-
ous knowledge such as where they have searched and
where they have found obstacles and/or targets. In
these further experiments, the robots will use three
landmarks to determine their X, Y positions and ori-
entation (Cohen & Koss 1992). When returning to the
drop-off zone with a target, the robots might pass other
targets that they must leave behind because their grip-
per is full. The robots would remember their position
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at that point and would use the geometric information
from three unique landmarks to return to that position
after dropping off the target at the home base. We
will analyze if the increased knowledge translates into
increased performance.

In order to incorporate this additional information,
a more deliberative architecture will most likely be re-
quired. Currently, the robots’ programs are completely
reactive in nature, and thus no time is spent analyzing
anything beyond the immediate surroundings. Intro-
ducing a more abstract decision process will very likely
introduce delay periods in which the robot must spend
time reasoning about its environment. We hope that
some middle ground can be discovered in which the
robot can increase its rate of success by using more en-
vironmental knowledge while not decreasing its overall
performance.
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