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Abstract. This paper addresses the problem of localization and map
construction by a mobile robot in an indoor environment using only
visual sensor information. Instead of trying to build high-fidelity geo-
metric maps, we focus on constructing topological maps because they is
less sensitive to poor odometry estimates and position errors. We pro-
pose a method for incrementally building topological maps for a robot
which uses a panoramic camera to obtain images at various locations
along its path and uses the features it tracks in the images to update the
its position and the map structure. The method is very general and does
not require the environment to have uniquely distinctive features. We
analyze feature-based localization strategies and present experimental
results in an indoor environment.

7 Introduction

We are interested in building maps of indoor environments using small robots
that have limited sensing. Since the robot must physically carry any sensors
that it will use, laser range finders or stereo camera systems cannot be used.
Cameras with omnidirectional lenses are better suited in terms of size, but do
not provide the same amount of information about the environment. In addition,
small robots typically have extremely poor odometry. Slight differences in the
speeds of the wheels and small debris or irregularities on the ground will degrade
the performance of any dead-reckoning position estimate and make accurate
localization or mapping very difficult.

Any method for map construction must take into account the large amount
of error in the robot’s sensing and odometric capabilities. We propose the con-
struction of a topological map as a graph where each node represents a location
the robot visited and took a sensor reading of its surroundings. Initially, the map
will contain a node for each sensor snapshot that the robot acquires. Thus, if
the robot has traversed the same location more than once, there will be multiple
? Work done while visiting the University of Minnesota
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nodes in the map for a single location. These nodes will have to be identified
and combined in order to generate a map which correctly matches the topology
of the environment.

In this paper we present a method for building such topological maps using
monocular panoramic images of the robot’s surroundings as sensor data. We take
a purely qualitative approach to landmarks by which a location “signature” is
used to match robot poses. In this approach, landmarks correspond to sensor
readings taken at various (x, y) positions along the robot’s path. The specifics
of the sensor modality are not important as long as the derived signature can be
compared against another sensor signature to determine whether the robot has
visited that location before.

For the specific implementation of this algorithm in this paper, we use two
different kinds of information extracted from camera images as features. The
first kind of features are extracted using the Kanade-Lucas-Tomasi (KLT) fea-
ture tracking algorithm [18, 27] that automatically extracts and matches visual
features from the images. The second kind make use of 3D color histograms.
Specific details of the features are described later in Section 10.1.

Section 9 describes the proposed method, explaining how to model the map
as a physics-based mass and spring system. Linear distances between each of the
nodes are represented as linear springs while rotational differences between nodes
are represented as torsional springs. The spring constants capture the certainty
in the odometry estimates. Stiff springs represent high measurement certainty
while loose springs represent low certainty. To identify nodes that correspond
to the same physical location, we use Markov localization [8] to determine the
probability of the robot’s position at each timestep. When a pair of nodes in
the map is merged, the graph finds a stable energy configuration so that each of
the local displacements between the nodes is maintained properly. As individual
nodes are merged, the structure of the map changes and the relative distances
and headings between the nodes are affected.

In Section 10 we report experimental results obtained with a mobile robot
in an indoor office environment and we measure the quality of the results in
image-based localization and mapping experiments.

8 Related Work

Physics-based models that involve spring dynamics have been used quite effec-
tively to find minimum energy states [6, 10]. The work most similar to ours is
by Andrew Howard et al. [11] where spring models are used to localize mobile
robots equipped with laser range finders. All of the landmarks used in their
work are unique, and precise distances to objects are identified using the range
finders. In contrast, we only assume we have bearing readings to landmarks
and that the landmarks may not be distinguishable. Other maximum-likelihood
based methods such as Konolige [14], Folkesson and Christensen [7], and Lu and
Milios [17] describe how to minimize an energy function when registering laser
scan matches. Our work differs from this in that we linearize the energy function.
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While this simplification may not generate an optimal solution, the method is
not likely to be affected by local minima in the energy space during relaxation.

Sim and Dudek [22] describe a visual localization and mapping algorithm
which uses visual features to estimate the sensor readings from novel positions
in the environment. In practice, our vision system could be replaced by any
other kind of boolean sensor modality which can report whether the robot has
re-visited a location.

In [29], a map is learned ahead of time by representing each image by its prin-
cipal components extracted with Principal Component Analysis (PCA). Brian
Pinette [19] described an image-based homing scheme for navigating a robot us-
ing panoramic images. Kröse et al. [15] and Artac̆ [3] built a probabilistic model
for appearance-based robot localization using features obtained by PCA. In [28],
a series of images from an omnicamera is used to construct a topological map of
an environment. Kuipers [16] learns to recognize places by clustering sensory im-
ages obtained with a laser range finder, associating them with distinctive states,
disambiguating distinctive states in the topological map, and learning a direct
association from sensory data to distinctive states. A color “signature” of the
environment is calculated using color histograms. Color information, which is
provided by most standard cameras, is receiving increasing attention. Swain and
Ballard [24] address the problem of identifying and locating an object repre-
sented by color histograms in an image. Cornelissen et al. [4] apply these meth-
ods to indoor robot localization and use color histograms to model predefined
landmarks.

We use the KLT algorithm to identify and track features. Lucas and Kanade [18]
proposed a registration algorithm that makes it possible to find the best match
between two images. Tomasi and Kanade [27] proposed a feature selection rule
which is optimal for the associated tracker under pure translation between subse-
quent images. We use an implementation of these feature selection and tracking
algorithms to detect features in the environment [13]. Similarly, Hagen [25] has
described a method by which a local appearance model based on KLT features
were combined with a local homing technique to generate a pose-free mapping
system. This method differs from ours in that we are primarily interested in
recovering the robot’s pose from its environmental exploration.

9 Localization and Map Construction

We are interested in constructing a spatial representation from a set of obser-
vations that is topologically consistent with the positions in the environment
where those observations were made. The goal is to reduce the number of nodes
in the map such that only one node exists for each location the robot visited
and where it took an image.

More formally, let D be the set of all unique locations (di) the robot visited.
Let S be the set of all sensor readings that are obtained by the robot at those
positions. Each st

i ∈ S represents a single sensor reading taken at a particular
location di at time t. If the robot never traveled to the same location twice,
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then |D| = |S| (the cardinality of the sets is the same). However, if the robot
visits a particular location di more than once, then |D| < |S| because multiple
sensor readings (stm

i ,stn
i ,...) were taken at that location. The problem then is to

determine from the sensor readings and the sense of self-motion which locations
in D are the same. Once identified, these locations are merged in order to create
a more accurate map.

When using small, resource-limited robots, there are several assumptions
about the hardware and the environment that must be made. First, we assume
that the robot will operate in an indoor environment where it only has to keep
track of its 2D position and orientation. This is primarily a time-saving assump-
tion which is valid because (for the most part) very small robots can only be
used on flat surfaces. Second, we assume that the robot is capable of sensing the
bearings of landmarks around it. This is a valid assumption even for small robots
because the cameras and omnidirectional mirrors can be made quite small [5].
Third, we assume that the robot has no initial map of its environment and that
we make no assumptions on the mechanism by which it explores its environment
(it might be randomly wandering in an autonomous fashion, or it might be com-
pletely teleoperated) [23]. As the robot moves, it keeps track of its rotational
and translational displacements. Finally, we assume that the robot moves in a
simplified “radial” [9] fashion where pure rotations are followed by straight-line
translations. This is not an accurate representation of the robot’s motion be-
cause the robot will encounter rotational motion while translating, however in
practice we have found that we can discount this for small linear motions.

9.1 Spring-Based Modeling of Robot Motion

Following each motion, a reading from the robots sensors is obtained. This se-
quence of motions and sensor observations can be represented as a graph where
each node initially has at most two edges attached to it, forming a single chain
(or a tree with no branches). The edges represent the translational and the rota-
tional displacement. This can be visualized using the analogy of a physics-based
model consisting of masses and springs. In this model, translational displace-
ments in the robot’s position can be represented as linear springs and rotational
displacements can be represented as torsional springs. The uncertainty in the
robot’s positional measurements can be represented as the spring constants. For
example, if the robot were equipped with high precision odometry sensors, the
stiffness in the springs would be very high.

By representing the locations as masses and the distances between those
locations as springs, a formulation for how well the model corresponds to the
data can be expressed as the potential energy of the system. The Maximum-
Likelihood Estimate (MLE) of the set of all sensor readings S given the model
of the environment M can be expressed as P (S|M) =

∏
s∈S P (s|M).

By taking the negative log likelihood of the measurements, the problem goes
from trying to maximize a function to minimizing one. Additionally, by express-
ing the allowable compressions of the spring as a normal probability distribution
(i.e., the probability is maximized when the spring is at its resting state), the log
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likelihood of the analytical expression for a Gaussian distribution is the same as
the potential energy equation for a spring, or −log(P (s|M)) = 1

2 (e − ê)2k.

In this formulation, e is the current elongation of the spring, ê is the relaxation
length of the spring and k is the spring constant. In order to minimize the energy
in the system, direct numerical simulation based on the equations of motion can
be employed. Figure 1 shows a simple example of how the linear and torsional
springs are used to represent the difference between the current model and the
robot’s sensor measurements.

Fig. 1. Examples of relative poses of the robot connected by linear and torsional
springs. Locations of sensor readings, lengths of linear robot translation, and angles of
robot rotation are represented as di, ej , and φk, respectively.

When the sensor readings of two nodes are similar enough to be classified as
a single node, the algorithm will attempt to merge them into a single location.
This merge will increase the complexity of the graph by increasing the number
of edges attached to each node. This merge will also apply additional tension
to all of the other springs, and the structure will converge to a new equilibrium
point.

If the landmarks observed at each location are unique, such as in the work
of Howard et al. [11], then the task of matching two nodes which represent
the same locations is fairly straightforward. However, in real world situations
and environments, this is extremely unlikely to occur. Without pre-marking the
environment and/or without extremely good a priori information, a robot cannot
assume to be able to uniquely identify each location. This requires the robot to
use additional means for determining its most likely location given its current
sensor readings and knowledge of its past explorations encoded in the topological
map.



6 P. Rybski, F. Zacharias, M. Gini, and N. Papanikolopoulos

9.2 Linear vs. Torsional Springs

Since the linear and torsional springs are separate, their error measurements
must be considered individually. The importance of the two kinds of springs
should also be considered separately. Several simulation experiments were per-
formed to analyze the relative importance of the linear and torsional spring
strengths. A set of simple three-node paths were generated such that the robot
returned to the starting point after tracing out a regular polygon. The linear
and rotational odometry estimates were corrupted by Gaussian random noise
with variance ranging from 0 to 1.0. The constants for the linear and torsional
springs were set to be the inverse of the noise. Thus, in these experiments, the
assumption was made that the robots had a good estimate for the amount of
error in both cases.

0.1 variance error Merge and relax Compare

0.7 variance error Merge and relax Compare

Fig. 2. Linear vs torsional constant comparison experiment. A three-node circular path
(triangle) has its linear and rotational components corrupted by noise. The start and
endpoints are merged (as they are the same location) and the model is allowed to relax.
Two sample variances, 0.1 and 0.7, are shown.

Figure 2 illustrates the process with two different variances. In this figure, the
initial true path of the robot is described as a regular polygon where the first and
last node close the polygon. The odometric estimates are corrupted by Gaussian
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noise. The first and last nodes are attached (merged) and the whole spring
model is allowed to relax. Finally, a transformation is found which minimizes the
total distance between the corresponding points in each dataset. This removes
errors based on global misalignments and only illustrates the relative errors in
displacement between the points in space. As can be seen, the distortion of 0.7
variance Gaussian noise in both linear and torsional springs produces a relaxed
path that is very different from the true path and thus has a very low sum of
squared difference match.

The results for the three-node experiment can be seen in Figure 3(a). A sim-
ilar experiment was run for four- and five-node paths. The resulting curves are
extremely similar to the shown three-node path. The results indicate that the
torsional spring constant is far more important than the linear spring constant.
As long as the torsional spring constant is strong (and thus has a correspond-
ingly low error estimate), the linear spring constant can be very weak (with a
correspondingly high error estimate), and the final model will still converge to
a shape that is very similar to the original path.

9.3 Torsional Constants vs. Error

The relative strengths of the spring constants must reflect the certainty of the
robot’s sensor measurements. The more certain the robot is of its sensor readings,
the stronger the spring constants should be. This adds rigidity to the structure of
the map and limits the possible distortions and displacements that could occur.

If the torsional error estimates are very high, then it does not matter how
strong the spring constants are. Very large rotational errors introduce too much
distortion into the map to be corrected by correspondingly strong spring con-
stants. Thus, it is vital that the robot’s rotational estimate errors be low.

(a) Linear vs torsional spring constant (b) Torsional spring constant vs error

Fig. 3. Simulation study of the effects of spring constants on the accuracy of the
estimated relative node positions. (a) Results for the three-node linear vs torsional
spring constant experiment. (b) Results for the three-node torsional spring constant vs
torsional error experiment.
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Figure 3(b) illustrates the results from this experiment. As can be seen,
a good error estimate for the torsional results is absolutely critical. The error
estimate completely dominates the accuracy of the final relaxed model, regardless
of the strength of the spring.

An interesting conclusion from these experiments is that linear odometry
estimates are not nearly as important as rotational odometry estimates. Unfor-
tunately, this is where the majority of the errors in robot odometry propagation
estimates occur. Methods for augmenting the robot’s odometric estimates such
as with visual odometry tracking or with a compass, such as in [6], would thus
greatly assist in estimating the robot’s position.

9.4 Sensor and Motion Models

The robot’s sensor model can be described as P (st|Lt,M). This is an expres-
sion for the probability that at time t, the robot’s sensors obtain the reading
st assuming that the estimate for the robot’s position is Lt. We represent the
probability distribution over all possible robot poses through a non-parametric
method called Parzen windows (a similar approach is used by [15]). Parzen win-
dows are typically used to generate probability densities over continuous spaces,
in this instance, we use the technique to generate a probability mass over the the
space of likely robot poses. Following the definition of conditional probabilities,
the equation for the sensor model can be described as

P
(
st|Lt,M

)
=

P (st, Lt,M)
P (Lt,M)

=
1
N

∑N
n=1 gs (st − st

n) gd (dt − dt
n)

1
N

∑N
n=1 gd(dt − dt

n)

where gs and gd are Gaussian kernels. The value (st − st
n) represents the differ-

ence between two sensor snapshots and is described in Section 10.1 below. The
value (dt − dt

n) represents the shortest path between two nodes.
Similarly, the robot’s motion model can be expressed as P

(
L(t+1)|s(t), L(t)

)
,

which represents the probability that the robot is in location L(t+1) at time t+1
given that its odometry registered reading s(t) after moving from location L(t)

at time t. This is represented as

P
(
L(t+1)|s(t), L(t)

)
= ge(e − ê)gφ(φ − φ̂)

where e and φ represent the linear and torsional components of the robot’s
motion in the current map and ê and φ̂ represent the originally measured values.

9.5 Map Construction

The sequence of observations that is generated by the robot’s exploration repre-
sents a map whose initial topology is a chain where each node only connects to
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at most two other nodes. To construct a more representative topology, the local-
ization algorithm must identify nodes that represent the same location in space,
i.e. where the robot has closed a cycle in its path. Markov localization will com-
pute, for each timestep, a distribution which shows the probability of the robot’s
position across all nodes at a particular time. Traditionally, Markov localization
cannot handle the “kidnapped robot” problem because a robot localizing itself
is essentially tracking incremental changes in its own position. In order to recog-
nize when two nodes are the same, the robot must acknowledge the possibility
of being in two different locations in the map at once so that the nodes can be
joined. To handle this situation, the robot must solve the localization problem
starting with a uniform distribution over all possible starting positions in the
graph. Thus, the robot must solves the complete Markov localization problem
from an unknown starting pose. This way, the robot is able to identify the multi-
modal case, assuming that its path had enough similarity over the parts where
the robot crossed its own path. This localization algorithm must be run every
time the robot attempts to find nodes that are the same location. Fortunately,
the relative sparseness of a topological map as compared to a grid-based map
(which is traditionally used for Markov localization), keeps the computational
complexity at a minimum.

After the Markov localization step, the robot now has a probability distri-
bution over all possible poses for each timestep. In cases where the probability
distribution is multi-modal, or where it is nearly equally likely that the robot
was in more than one node at a time, there exists a good chance that those
nodes are actually a single node that the robot has visited multiple times. The
hypothesis with the highest probability of match from all of the timesteps is
selected and those nodes are merged. Merging nodes distorts the model and in-
creases the potential energy of the system. The system then attempts to relax to
a new state of minimum energy. If this new state’s potential energy value is too
high, then the likelihood that the hypothesis was correct is very low and must be
discarded. Additionally, merges that are incorrect will affect the certainty of the
the localization probability distribution after a Markov localization step. This
can be observed by an increase in entropy H(X) = −

∑n
i=1 p(xi)log(p(xi)) of

the probability distribution over the robot’s pose in the topology. An increase
in entropy can also be used as an indicator that the merge was incorrect.

This process runs through several iterations until it converges on the most
topologically-consistent map of the environment. This iterative process is similar
in spirit to the algorithm proposed by Thrun et al. [26]. Since this algorithm
relies on local search to find nodes to merge, there is no guarantee that the map
constructed from this algorithm will be optimal. As the robot continues to move
around, more information about the environment will be gathered and can be
used to get a more accurate estimate of the robot’s position.
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10 Real-World Validation

In order to determine the effectiveness of the proposed method for image based
localization and map construction, two separate experiments were performed in
the office environment shown in Figure 4. The first was a localization-only exper-
iment where the KLT algorithm was used in two different ways, termed feature
matching and feature tracking, in addition to a third method based on a 3D color
(RGB) histogram feature extraction. The second experiment combined the KLT
algorithm with the spring system to test the ability of the MLE algorithm to
converge to a topologically-consistent map.

Fig. 4. Map of the office environment where our tests were conducted. The nodes of
the robot’s training path are shown with triangles.

10.1 Extraction of Visual Features

Three different methods for extracting features from the images were tried: (1)
KLT feature matching, (2) KLT feature tracking, and (3) 3D color histogram
feature extraction.

1. In the feature matching approach, features are selected in each histogram
normalized image using the KLT algorithm. The undirected Hausdorff
metric H(A,B) [12] is used to compute the difference between the two sets.
Since this metric is sensitive to outliers, we used the generalized undirected
Hausdorff metric and looked for the k-th best match (rather than just the
overall best match), where k was set to 12. This is defined as

H(A,B) = max
kth

(h(A,B), h(B,A)) (1)

h(A,B) = max
a∈A

min
b∈B

‖ ai − bj ‖ (2)
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where A = {a1, a2, ..., am} and B = {b1, b2, ..., bn} are two feature sets. Each
feature corresponds to a 7x7 pixel window (the size of which was recom-
mended in [27]) and ‖ ai − bj ‖ corresponds to the sum of the differences of
the pixel intensities.
To take into account the possibility that two images might correspond to
the same location but differ in rotation, the test image was rotated to eight
different angles to find the best match.

2. In the feature tracking approach, KLT features are selected from each of the
images and are tracked from one image to the next taking into account a
small amount of translation between the two positions where the images were
taken. The degree of match is the number of features successfully tracked
from one image to the next.

3. In the 3D color histogram feature extraction method, features representing
interesting color information in the image are extracted. Colors that are very
sparse in the image are considered to be interesting since they carry more
unique information about features. We have derived the following index for
windows of pixels in an image:

value(w) =
∑

i

h(i) ∗ (1 − P (i)) (3)

where i is a color value, h is the histogram bin of window w for color i and
P (i) is the probability that color i is observed in the image. We approximate
P (i) by the actual distribution of colors in the image normalized to the range
[0,1]. Thus the higher the value of a window w the more valuable we assume
the feature to be.
After finding interesting features, we extracted a feature set from an image
at the current position and compared it to the feature sets for positions of
our topological map using the Hausdorff metric. To measure the distance
between single histograms, ‖a − b‖ in Equation 2, we take the histogram
intersection index

intersection (hk(i), hj(i)) =
∑

i

min(hk(i), hj(i)) (4)

We then localize to that map position for which the feature set is closest in
the above sense to the one for the current position. To enhance the perfor-
mance of the color histogram approach, we have implemented an adaptation
of the data-driven color reduction algorithms presented in [2].

Each of the approaches has different advantages and disadvantages. Extract-
ing features using the KLT algorithm but not accounting for the translation of
the feature from one image to the next has the advantage of being faster and re-
quiring less memory than using the associated tracker. However, it is less precise
due to the fact that there is no model for how the features move in the images.
The KLT tracker required 10.22 s per position estimation compared to 360 ms
for the KLT matcher on a 1.6 GHz Pentium 4 with 512 MB RAM. The color
histogram method required 1.3 s. Feature extraction required 330 ms for KLT
and 1.25 s for the color histogram.
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10.2 Determining the Number of Features to Track

Determining the number of features to track is very important since this choice
can represent a major tradeoff in accuracy and performance. Typically, as the
number of features increases, the accuracy of the localization algorithm will
increase at the expense of computation time.

To evaluate how many features to track, we obtained a set of 320 images taken
at 0.3 m intervals in the office environment used for the robotics experiments.
Figure 5 shows a plot of the Euclidean distance estimate between each pair
of locations as a function of the number of features that the KLT algorithm
can track between the respective images. As can be seen, until the number of
features tracked drops to between 40-50, the likelihood that the two images are
within 0.5 m of each other is extremely high. With fewer features, it becomes
extremely hard to tell whether a location is the same or not. In this graph,
there were no values of matched features of 60 and higher. A match of 100
features would indicate that the the robot was in exactly the same location.
From this experiment, it was determined that operating over a set of 15 features
was an adequate trade off between performance and accuracy since all three of
the algorithms performed at an acceptable speed with this number of features.

This metric can also be used by the exploration algorithm to determine when
to take a new image. When the robot takes an image as a landmark, it would
attempt to track the features in subsequent images while simultaneously moving
to a new location. Once the number of tracked image features drops below the
above threshold, a new landmark image can be stored.

10.3 Image-Based Localization Experiments

A set 26 of panoramic images were obtained in the office environment shown in
Figure 4. The room has a checkerboard floor while the corridor has a floor of
uniformly-colored tiles. The dotted lines show the outline of the office and the
furniture within it while the solid lines show the path along which the images
were taken.

Images were taken at 1.07 m increments by a panoramic camera mounted
on the back of a Pioneer 2 [1] mobile robot. Images have 640x480 pixels and
are unwrapped into images of 816x155 pixels. This set of images was used to
construct the topological map shown in Figure 4 and serves as the reference set.

The KLT feature matcher was used to extract features from the panoramic
images. 15 features were selected from each image, since, as described in Sec-
tion 10.2, this offered the best compromise between performance and accuracy.
Figure 6 shows a set of features obtained by applying the feature matcher to a
panoramic image. As can be seen, features corresponding to corners and promi-
nent edges are selected.

Two sets of test images were acquired along the paths shown in Figure 7.
Triangles show the positions of the original test set of images. Circled arrows
show the positions of the images taken for the test sets. The images in the first
test set were mostly taken along the original path from which the training set
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Fig. 5. Comparison of the number of features tracked vs. the Euclidean distance be-
tween locations where the features were obtained.

was obtained. The images in the second set were taken in a zig-zag pattern
that moved mostly perpendicular to the path of the training set. These two sets
were used to test the ability to localize the robot in the previously constructed
topological map using only the visual information.

Table 1 illustrates the performance of the three vision algorithms on the two
different sets of data. The average distance error is the average Euclidean dis-
tance between the correct position and the reported position. The second metric
is the number of position matches that reported multiple possible positions of
the robot with equal certainty (this is caused by perceptual aliasing). The cor-
rect position to be attributed to a test position is assumed to be the nearest
position (by Euclidean distance) of the reference path. When multiple position
estimates are available, the worst possible position is used. The reason that the
tracker and color histogram algorithms had multiple position estimates when
the matcher did not was due to the scale difference in the error metrics. The
feature matcher compared the difference in pixel image intensity which could
range between [0 − 12495] while the tracker and color histogram matcher had
far fewer possible values.
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Fig. 6. The 50 best features selected with the KLT feature matcher on a panoramic
image. In our experiments, only the 15 best features were used.

Test set 1 Test set 2
Error Feature Feature Color Feature Feature Color
metric matcher tracker Hist. matcher tracker Hist.

Avg. distance 1.58 0.51 3 2.97 1.34 2.9
in meters

Multiple pos. 0 1 1 0 6 2
estimates

Table 1. Average errors for the tests.

As can be seen from the results, the static KLT feature matching algorithm
was worst at finding the best match between an image in the training set and an
image in the test set. When the training and test images were nearly identical
(taken from virtually the same location in space), the static feature matcher
was very good at finding the correct match. However, as the spatial difference
between the images increased, the resulting match rapidly degraded. The feature
tracking algorithm did a much better job of matching images in the test set to
the training set. This algorithm was also much better at handling changes in
feature position caused by the motion of the robot since it takes into account
the translational motion of the features in the image. Unfortunately, the KLT
feature tracking algorithm is much more complex in terms of computing time
and memory/storage requirements.

10.4 Mapping Experiment

The set of training images taken in the previous experiments was used to test the
MLE map construction algorithm. Noisy odometry estimates were assigned to
each of the paths between images in the training set. The KLT feature tracking
algorithm was used to compare features in pairs of images and only the training
set of images was used. This corresponds to the case where a robot explores an
unknown environment. As the robot explores, it attempts to find the most likely
structure by merging nodes from its map which appear to correspond to the
same sensor data.

Figure 8 illustrates the process of how the algorithm works. The original data
reflects the errors in the odometric readings of the robot. In Step 1, Markov local-
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(a) Images for test set 1 were taken in between reference posi-
tions along the path.

(b) Images for test set 2 were taken on a zigzag path across the
training path.

Fig. 7. Paths in the environment where our tests were conducted. The training posi-
tions are labeled with triangles, the test positions with circled wedges. The heading of
the robot at each node is shown by the direction of the triangle or wedge.

ization identifies a high probability of the robot’s position in nodes at timestep 6
and 19. These two are merged and the spring model is allowed to relax. In Step
2, Markov localization is run again on the map and nodes 11 and 14 are merged.
By this point, the map has obtained a shape that better matches the topology of
the environment. Each possible merge candidate is evaluated by how the merge
affects the entropy of the pose distribution. Bad merges will create inconsistent
topological structures and have a tendency to increase the robot’s pose entropy.
This means that it is less sure of its position in the environment.

11 Conclusions and Future Work

Several different sensor approaches were tried for image based localization. Fea-
ture tracking was found to be better than simple feature matching since the
positions of the features move in non-linear fashions around the image as the
robot moves around its environment. The tradeoff is that the feature tracking
algorithm is much slower to operate than the simple feature comparison algo-
rithm.
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Initial configuration

Iteration 1 Iteration 2 (final)

Fig. 8. Several iterations of the convergence algorithm. Circled nodes are to be merged
in the next iteration. Only the accepted node merge candidates are shown in this
example. Node merge candidates that increased the entropy of the pose distribution
(and thus were rejected) are not shown. After iteration 2, all other node merge pairs
were rejected.

Feature tracking was also better than the color histogram feature extraction.
The main reason for the poor performance of the histogram method is the lack
of distinctive colors in the environment where the experiments were conducted,
which was exacerbated by the poor quality of the images. The tarnishing of
the mirror introduced reflection stripes in some of the images. The reflections
were very bright, similar to ceiling lights, causing confusion. Additional tests
done with higher quality images have shown improvement, but the method is
still not as reliable as the KLT tracker. The KLT tracker is too slow for real
time performance, while both the KLT matcher and the color histogram have a
chance to become real-time with additional optimization.

The KLT-based approaches operate on the intensity of pixels found in grayscale
images. The features found with this method tend to differ greatly from the fea-
tures found with the color-based histogram method. An interesting direction for
future work would be to determine how to find good features that exhibit good
qualities for both the KLT and color histogram methods. By using a combina-
tion of intensity and color information for the features, we would expect that the
individual features would be even more readily distinguishable from the image
background and thus easier to track overall.

The mapping algorithm has been found to be very sensitive to certain param-
eters. The spring and dampening constants used by the spring convergence step
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must be selected carefully to ensure convergence. To address this, other meth-
ods have been examined, include weighted least squares [21], and the Kalman
filter [20]. Another parameter that could affect the performance of the localiza-
tion algorithm are the widths of the Gaussian distributions used in the Parzen
windows. Empirical studies are being done to determine good values for these
parameters.

The entropy of the pose distribution is used as a method for tracking the
progress of the algorithm. The specific thresholds for determining when a dis-
tribution’s entropy is too high are empirically determined but more work needs
to be done to fully make this a robust empirical metric. Finally, we do not “re-
set” the relaxation constants after the merge as the total energy after all merges
have been completed represents how much error exists in the robot’s odome-
try. Should we decide to “undo” a merge later on, we would want the map to
retain the original information so that new merges could be handled. Future
work will consider methods by which old merges can be undone in lieu of better
information.
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